

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

UNITS AND MEASUREMENT

Class 11 - Physics

Section A

1.	The error in the measurement of the sides of a rectangle is 1%. The error in the measurement of its area is		[1]
	a) None of these b	$1)\frac{1}{2}\%$	
	c) 2% d) 1%	
2.	light year is a unit of		[1]
	a) Distance b) Time	
	c) Luminosity) Mass	
3.	Which of the following is not a fundamental unit?		[1]
	a) centigrade) kg	
) volt	
4.	$[L^{1}M^{1}T^{-1}]$ is the dimensional formula for		[1]
	a) Velocity b) Work	
	c) Force) Acceleration	
5.	Dimensions of kinetic energy are the same as that of		[1]
) Work	
) Pressure	
6.	Define absolute error.	, 1.000420	[1]
7.	O ,	A and $B + ABAA$ and AB being the mean absolute	[1]
<i>,</i> .	7. If the measured values of the two quantities are $A \pm \Delta A$ and $B \pm \Delta B$, ΔA and ΔB being the mean absolute errors. What is the maximum possible error in $A \pm B$?		[1]
8.	Define mean percentage error.		[1]
Section B			[-]
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[2]
9.	If the formula for a physical quantity is $X = \frac{1}{2}$	$\frac{3 d^{1/2}}{d^{1/2}}$ measurements of a, b, c and d are	[4]
	and if the percentage error in the $2\%, 3\%, 3\%$ and 4% respectively. Calculate percentage error in X .		
10. Nuclear radius R has a dependence on the mass number (A) as $R=1.3 imes 10^{-16}A^{1/3}~m$. For a nuclear			[2]
	mass number $A=125$, obtain the order of magnitude of R expressed in the meter.		
11.	Find the percentage error in kinetic energy of a body having mass $60.0\pm0.3~g$ moving with a velocity of		[2]
	$25.0\pm0.1~cm/s.$		
12.	Write down the number of significant figures in the follo	wing: $0.003 \ m^2, 0.1250 gmcm^{-2}$,	[2]
	$6.4 imes 10^6 \ m, 1.6 imes 10^{-19} C, 9.1 imes 10^{-31} \ kg$.		

- 13. Define Mean absolute error. [2]
- 14. Star A is farther than star B. Which star will have a large parallax angle? [2]

Section C

- 15. In Ohm's experiments, the values of the unknown resistances were found to be 6.12Ω , 6.09Ω , 6.22Ω , 6.15Ω . [3] Calculate the (mean) absolute error, relative error, and percentage error in these measurements.
- 16. When the planet Jupiter is at a distance of 824.7 million kilometers from the Earth, its angular diameter is measured to be 35.72'' of arc. Calculate the diameter of Jupiter.
- 17. A large ball 2 m in radius is made up of a rope of square cross-section with edge length 4 mm. Neglecting the air [3] gaps in the ball, what is the total length of the rope to the nearest order of magnitude?
- 18. The masses of two bodies are measured to be $15.7 \pm 0.2 \ kg$ and $27.3 \pm 0.3 \ kg$. What is the total mass of the two and the error in it?
- 19. $v = at + \frac{b}{t+c} + v_0$ is a dimensionally valid equation. Obtain the dimensional formula for a, b and c where v is velocity, t is time and v_0 is initial velocity.
- 20. The diameter of a sphere is 2.14 cm. Calculate the volume of the sphere to the correct number of significant figures
- 21. The distance travelled by an object in time $(100 \pm 1)s$ is $(5.2 \pm 0.1)m$. What are the speed and its maximum [3] relative error?
- 22. Derive the formula of the kinetic energy of a particle having mass 'm' and velocity 'v', using dimensional analysis.
- 23. What are the dimensions of the quantity $l\sqrt{l/g}$, l being the length, and g acceleration due to gravity? [3] Section D
- 24. In a workshop, a worker measures the length of a steel plate with Vernier calipers having a least count 0.01 cm. **[4]** Four such measurements of the length yielded the following values: 3.11 cm, 3.13 cm, 3.14 cm, 3.14 cm. Find the mean length, the mean absolute error, and the percentage error in the measured value of the length.
- 25. If the length of a cylinder is $l=(4.00\pm0.001)cm$, radius $r=(0.0250\pm0.001)cm$ and mass $m=(6.25\pm0.01)g$. Calculate the percentage error in the determination of density.
- 26. An object is falling freely under the gravitational force. Its velocity after travelling a distance h is v. If v depends upon gravitational acceleration g and distance, prove with the dimensional analysis that $v = \sqrt{gh}$ where k is a constant.
- 27. An electron with charge e enters a uniform magnetic field \vec{B} with a velocity \vec{v} . The velocity is perpendicular to the magnetic field. The force on the charge is given by $|\vec{F}| = B$ e v. Obtain the dimensions of \vec{B} .
- 28. The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m and 2.01 cm respectively. **[4]** Give the area and volume of the sheet to correct significant figures.
- 29. Describe what is meant by significant figures and order of magnitude. [4]
- 30. Show that if $Z = \frac{A}{B}, \frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$