Solution

SOME APPLICATIONS OF TRIGONOMETRY

Class 10 - Mathematics

1. In right triangle ABC,

$$\sin 30^{\circ} = \frac{AB}{AC} \Rightarrow \frac{1}{2} = \frac{AB}{20} \Rightarrow AB = 10 \mathrm{m}$$

Hence, the height of the pole is 10 m.

Let AC be the broken part of the tree.

... Total height of the tree = AB + AC

In right $\triangle ABC$,

$$\cos 30^{\circ} = \frac{BC}{AC}$$

$$\Rightarrow \frac{\sqrt{3}}{2}$$
 = 8/AC $\frac{\sqrt{3}}{2}$ = $\frac{8}{AC}$

$$\Rightarrow$$
 AC = $\frac{16}{\sqrt{3}}$

Also,

$$\tan 30^{O} = \frac{AB}{BC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{8}$$

$$\Rightarrow$$
 AB = $\frac{8}{\sqrt{3}}$

Total height of the tree = AB + AC = $\frac{16}{\sqrt{3}}$ + $\frac{8}{\sqrt{3}}$ = $\frac{24}{\sqrt{3}}$

3. In the first case:

Height of slide= 1.5 m and angle of elevation = 30°

Now,

$$\sin \theta = \frac{p}{h}$$

where p = perpendicular, i.e. height of the slide and h = hypotenuse, i.e. length of the slide and θ is the angle of elevation

$$\sin 30^\circ = rac{1.5}{h}$$

$$\frac{1}{2} = \frac{1.5}{h}$$

Hence, h = 3 m

In the second case:

Height of slide, = 3 m, angle of elevation = 60°

$$\sin \theta = \frac{p}{h}$$

$$\sin 60^\circ = \frac{3}{h}$$

$$\frac{\sqrt{3}}{2} = \frac{3}{h}$$

Hence, $h = 2\sqrt{3} \text{ m}$

Therefore, the length of the slide in the first and the second case are 3 m and $2\sqrt{3}$ m respectively.

4. In right triangle ABC,

$$an 30^\circ = rac{AB}{BC} \Rightarrow rac{1}{\sqrt{3}} - rac{AB}{30}$$

$$AB = \frac{30}{\sqrt{3}} \Rightarrow AB = 10\sqrt{3}$$
 m

Hence, the height of the tower is $10\sqrt{3}$ m.

In right triangle ABC,

$$\sin 60^{\circ} = \frac{AB}{AC}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{60}{AC}$$

$$AC = \frac{120}{\sqrt{3}}$$

Multiplying $\sqrt{3}$ in both numerator and denominator,

$$ext{AC} = rac{120}{\sqrt{3}} imes rac{\sqrt{3}}{\sqrt{3}}$$

$$AC = 40\sqrt{3}m$$

Hence the length of the string is $40\sqrt{3}\,\text{m}.$

Let AE is the Length of the building.

Again
$$BE = DF = 1.5$$

Now in triangle ABC,

$$tan60 = \frac{AB}{BC}$$

$$\Rightarrow \sqrt{3} = \frac{28.5}{BC}$$

$$\Rightarrow$$
 BC = $\frac{28.5}{\sqrt{3}}$

Again in triangle ABD

$$tan30 = \frac{AB}{BD}$$

$$\frac{\sqrt{1}}{\sqrt{3}} = \frac{28.5}{BD}$$

$$\Rightarrow$$
 BD = 28.5× $\sqrt{3}$

$$\Rightarrow$$
 BC + CD = 28.5 $\sqrt{3}$

$$\Rightarrow$$
 28.5/ $\sqrt{3}$ + CD = 28.5 $\sqrt{3}$

$$\Rightarrow$$
 CD = $\frac{28.5}{\sqrt{3}}$ - $\frac{28.5}{\sqrt{3}}$

$$\Rightarrow$$
 CD = $\frac{28.5 \times 3 - 28.5}{\sqrt{3}}$

$$\Rightarrow$$
 CD = $\frac{28.5(3-1)}{\sqrt{3}}$

$$\Rightarrow$$
 CD = $\frac{(28.5 \times 2)}{\sqrt{3}}$

$$\Rightarrow$$
 CD = $\frac{(57)}{\sqrt{3}}$

$$\Rightarrow$$
 CD = $\frac{(57\sqrt{3})}{\sqrt{3}\times\sqrt{3}}$ (Multiply $\sqrt{3}$ in numerator and denominator)

$$\Rightarrow$$
 CD = $\frac{57\sqrt{3}}{3}$

The distance he walked towards the building is 19√3 m

Let BC be the building, AB be the transmission tower, and D be the point on the ground. In ΔBCD ,

$$rac{BC}{CD} = tan45^{\circ}$$
 $\Rightarrow rac{20}{CD} = 1$
 $\Rightarrow CD = 20$

In ΔACD,

$$egin{aligned} rac{AC}{CD} &= tan60^{\circ} \ \Rightarrow rac{AB+BC}{CD} &= \sqrt{3} \ \Rightarrow rac{AB+20}{20} &= \sqrt{3} \ \Rightarrow AB + 20 &= 20\sqrt{3} \ \Rightarrow AB &= 20(\sqrt{3}-1) \ m. \end{aligned}$$

Let the height of the pedestal be h m.

In right triangle ACP,

$$an 60^\circ = rac{AC}{PC} \ \Rightarrow \sqrt{3} = rac{AB+BC}{PC} \ \Rightarrow \sqrt{3} = rac{1.6+h}{PC}.....(i)$$

In right triangle BCP,

$$\begin{split} \tan 45^\circ &= \frac{BC}{PC} \\ \Rightarrow 1 = \frac{h}{PC} \Rightarrow_{PC} = h \\ \therefore \sqrt{3} &= \frac{1.6 + h}{h} [\text{From eq. (i)}] \\ \Rightarrow \sqrt{3}h = 1.6 + h \Rightarrow h(\sqrt{3} - 1) = 1.6 \Rightarrow \frac{1.6}{\sqrt{3} - 1} \\ \Rightarrow \frac{1.6(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \Rightarrow h = \frac{1.6(\sqrt{3} + 1)}{3 - 1} \Rightarrow h = \frac{1.6(\sqrt{3} + 1)}{2} \\ \Rightarrow h = 0.8(\sqrt{3} + 1)_{\text{m}} \end{split}$$

9. Given,

Let the height of building be AB and height of tower CD Height of the tower (CD)= 50 m Angle of elevation of top of building from foot of tower = 30^O

Hence, $\angle ACB = 30^{\circ}$

Angle of elevation of top of tower from from foot of building = 60°

Hence, \angle DBC = 60°

$$\angle$$
 ABC = 90 $^{\circ}$ & \angle DCB = 90 $^{\circ}$

In a right angle triangle DBC,

$$tan B = \frac{side \ opposite \ to \ angle \ to \ D}{side \ opposite \ to \ angle \ H}$$

$$\tan B = \frac{DC}{BC}$$

$$tan60^0 = \frac{50}{BC}$$

$$BC = \frac{50}{\sqrt{3}}$$

Similarly,

In a right angle triangle ABC,

$$tan C = \frac{side \ opposite \ to \ angle \ to \ C}{side \ adjacent \ to \ angle \ C}$$

$$tan30^0 = \frac{AB}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{\frac{50}{\sqrt{3}}}$$

$$\frac{1}{\sqrt{3}} \times \frac{50}{\sqrt{3}} = AB$$

$$AB = \frac{1}{\sqrt{3}} imes \frac{50}{\sqrt{3}}$$

$$AB = \frac{50}{3}m$$

Suppose AB and CD are the two poles of equal height h m. BC be the 80 m wide road. P is any point on the road. Let CP be x m, therefore BP = (80 - x) . Also, \angle APB = 60° and \angle DPC = 30°

In right angled triangle DCP,

$$\tan 30^{\circ} = \frac{CD}{CP}$$

$$\Rightarrow \frac{h}{x} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow h = \frac{x}{\sqrt{3}}$$
(1)

In right angled triangle ABP,

Tan
$$60^{\circ}$$
 = AB/AP $\frac{AB}{AP}$

$$\Rightarrow \frac{h}{80-x} = \sqrt{3}$$

$$\Rightarrow h = \sqrt{3}(80 - x)$$

$$\Rightarrow \frac{x}{\sqrt{3}} = \sqrt{3}(80 - x)$$

$$\Rightarrow$$
 x = 3(80 - x)

$$\Rightarrow$$
 x = 240 - 3x

$$\Rightarrow$$
 x + 3x = 240

Height of the pole, $h = x/\sqrt{3} = 60/\sqrt{3} = 20\sqrt{3}$.

Thus, the position of the point P is 60 m from C and the height of each pole is 20√3 m.

Let 'h' (AB) be the height of tower and x be the width of the river

In
$$\triangle ABC, rac{h}{x} = an 60^\circ$$

$$\Rightarrow h = \sqrt{3}x$$
(i)

In
$$\Delta ABD, rac{h}{x+20}= an 30^\circ$$

$$\Rightarrow h = rac{x+20}{\sqrt{3}}$$
(ii)

Equating (i) and (ii),

$$\sqrt{3}x=rac{x+20}{\sqrt{3}}$$

$$\Rightarrow$$
 3x = x + 20

$$\Rightarrow$$
 2x = 20

$$\Rightarrow$$
 x = 10 m

Put x = 10 in (i),
$$h = \sqrt{3}x$$

$$\Rightarrow h = 10\sqrt{3}\mathrm{m}$$

12. In right triangle ABD,

$$an 45^0 = {AB\over BD}$$

$$\Rightarrow 1 = \frac{7}{BD}$$

$$\Rightarrow$$
 BD = 7 m

$$\Rightarrow$$
 AE = 7 m

In right triangle AEC,

$$an 60^{\circ} = rac{CE}{AE}$$

$$\Rightarrow \sqrt{3} = \frac{\text{CE}}{7} \Rightarrow \text{CE} = 7\sqrt{3}\text{m}$$

$$= 7\sqrt{3} + 7 = 7(\sqrt{3} + 1)m$$

Hence height of the tower is $7(\sqrt{3}+1)$ m.

13. In right triangle ABQ,

$$an 45^\circ = rac{AB}{BO}$$

$$\Rightarrow 1 = \frac{75}{BQ}$$

In right triangle ABP,

$$an 30^\circ = rac{AB}{BP}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{BQ + QP}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{75 + QP}$$
[From eq. (i)]

$$\Rightarrow$$
 75 + QP = $75\sqrt{3}$

QP =
$$75(\sqrt{3}-1)$$
 m

Hence the distance between the two ships is $75(\sqrt{3}-1)$ m.

Let CD be the girl

Let initial position of balloon A shift to another position B after sometime In \triangle ACE, Tan $60^{O} = \frac{AC}{CE}$

$$an 60^\circ = rac{(AF-EF)}{CE}$$

$$\sqrt{3} = \frac{(88.2 - 1.2)}{CE}$$

$$\mathsf{CE} = 29\sqrt{3}m$$

In
$$\triangle$$
BCG, Tan 30^O = $\frac{BG}{CG}$

Tan 30° =
$$\frac{(BH-GH)}{CG}$$

$$CG = 87\sqrt{3} \text{ m}$$

Distance travelled by the balloon, EG = CG - CE = $(87\sqrt{3}-29\sqrt{3})$ = $58\sqrt{3}\mathrm{m}$

In right triangle ABP,

$$an 30^\circ = rac{ ext{AB}}{ ext{BP}}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{BP}$$

BP = AB
$$\sqrt{3}$$
 (i)

In right triangle ABQ,

$$tan \ 60^0 = \frac{AB}{BQ}$$

 $\Rightarrow \sqrt{3} = \frac{AB}{BQ}$
 $\Rightarrow_{BQ} = \frac{AB}{\sqrt{3}}$ (ii)
 \therefore PQ = BP - BQ
 \therefore PQ = AB $\sqrt{3} - \frac{AB}{\sqrt{3}} = \frac{3AB - AB}{\sqrt{3}} = \frac{2AB}{\sqrt{3}} = 2$ BQ [From eq. (ii)]
 \Rightarrow BQ = $\frac{1}{2}$ PQ

- \therefore Time taken by the car to travel a distance PQ = 6 seconds.
- \therefore Time taken by the car to travel a distance BQ, i.e. $\frac{1}{2}$ PQ = $\frac{1}{2}$ × 6 = 3 seconds. Hence, the further time taken by the car to reach the foot of the tower is 3 seconds.