1.

(d) 30⁰

Explanation:

Let one angle be x⁰

Its supplementary angle will be 180° - x°

According to question

$$x = \frac{1}{5}(180^{\circ} - x)$$

$$5x + x = 180^{\circ}$$

$$6x = 180^{\circ}$$

$$x = \frac{180}{6}$$

$$x = 30^0$$

2.

(c) 130° , 50°

Explanation:

Let the two supplementary angles be x^0 and 180^0 - x^0

Let 180° - x be the larger angle

$$180^0 - x = 3x - 20^0$$

$$4x = 200^{\circ}$$

$$x = 50^{\circ}$$

So the angles are 50° and 130°.

3.

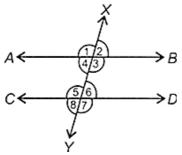
(c) three

Explanation:

Three because non-collinear points means the point does not lies in a same line.

4.

Explanation:



- (a) Corresponding angles $\rightarrow \angle 1 = \angle 5$
- (b) Alternate interior angles $\rightarrow \angle 4 = \angle 6$
- (c) Alternate exterior angles $\rightarrow \angle 1 = \angle 7$
- (d) Co-interior angles $\rightarrow \angle 4 + \angle 5 = 180^{\circ}$

5.

(d) 12:3:2

Explanation:

$$B = \frac{1}{4}x$$

$$C = \frac{1}{6}x$$

$$x : \frac{1}{4}x : \frac{1}{6}x$$

LCM of 4 and 6 is 12

6.

(b) an acute angle

Explanation:

an acute angle

If two angles are complements of each other, that is, the sum of their measures is 90°, then each angle is an acute angle.

7.

(b) 60°

Explanation:

We know that, angle made on the straight line is 180°.

$$\therefore 3x + 4x + 2x = 180^{\circ} \Rightarrow 9x = 180^{\circ} \Rightarrow x = 20^{\circ}$$

$$\therefore$$
 \angle AOF = 3x = 60°

As,
$$\angle$$
DOC = \angle AOF (vertically opposite angles)

8.

(b) 126°

Explanation:

Let
$$a = 2x$$
 and $b = 3x$

Now, XOY is a straight line.

$$\therefore 2x + 3x + 90^{\circ} = 180^{\circ} \Rightarrow 5x = 90^{\circ} \Rightarrow x = 18^{\circ}$$

$$\therefore$$
 \angle XON = \angle MOY = \angle MOP + \angle POY (vertically opposite angles)

$$= 36^{\circ} + 90^{\circ} = 126^{\circ}.$$

9.

(c) (ii) and (iii) are correct

Explanation:

When two straight lines intersect them, Adjacent angles are supplementary and opposite angles are equal.

10. **(a)** 86°

Explanation:

Given,

$$\angle AOC + \angle COB + \angle BOD = 274^{\circ}$$
(i)

$$\angle$$
AOD + \angle AOC + \angle COB + \angle BOD = 360° (Angles at a point)

$$\angle$$
AOD + 274 $^{\circ}$ = 360 $^{\circ}$

$$\angle$$
AOD = 86°

11.

(c) 36°

Explanation:

Let x and $(90^{\circ} - x)$ be two complimentary angles

According to question,

$$2x = 3(90^{\circ} - x)$$

$$2x = 270^{\circ} - 3x$$

$$x = 54^{\circ}$$

The angles are:

 54° and $90^{\circ} - 54^{\circ} = 36^{\circ}$

Thus, smallest angle is 36°

12.

(b) 20°

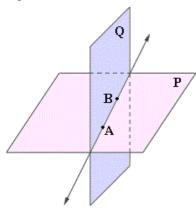
Explanation:

20°

13.

(d) Straight line

Explanation:



As can be seen from the above diagram, the two planes "P" and "Q" are intersecting in a line, which is AB.

14. **(a)** 90°

Explanation:

Given that,

AB and CD intersect at O

$$\angle AOC + \angle COB + \angle BOD = 270^{\circ}$$
 (i)

$$\angle$$
COB + \angle BOD = 180° (Linear pair) (ii)

Using (ii) in (i), we get

$$\angle AOC + 180^{\circ} = 270^{\circ}$$

$$\angle AOC = 90^{\circ}$$

15. **(a)** 75°

Explanation:

Let the measure of the required angle be x°

Then, the measure of its complement will be $(90 - x)^{\circ}$

$$\therefore x = 5 (90 - x)$$

$$\Rightarrow$$
 x = 450 - 5x

$$\Rightarrow$$
 6x = 450

$$\Rightarrow$$
 x = 75°

16.

(c) 135°

Explanation:

Let the required angle be x

Supplement =
$$180^{\circ} - x$$

According to question,

$$x = 3 (180^{\circ} - x)$$

$$x = 540^{\circ} - 3x$$

$$x = 135^{\circ}$$

17.

(c) a right triangle

Explanation:

The sum of the angles of triangle is 180° .

let the angles of triangle be a, b, c

We have given that one angle of a triangle is equal to the sum of the other two angles

so we have

$$c = a + b$$

$$a + b + c = 180^{\circ}$$

Substitute c for a + b

$$c + c = 180^{0}$$

$$2c = 180^{\circ}$$

$$c = 90^{\circ}$$

Therefore the triangle is a right triangle.

18.

(b) 155°

Explanation:

Let angles of a triangle be $\angle A$, $\angle B$ and $\angle C$

In \triangle ABC,

$$\angle A + \angle B + \angle C = 180^\circ$$
 [sum of all interior angles of a triangle is 180°]

$$\Rightarrow \frac{1}{2}\angle A + \frac{1}{2}\angle B + \frac{1}{2}\angle C = \frac{180^{\circ}}{2} = 90^{\circ}$$
 [dividing both sides by 2]

$$\Rightarrow \frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^{\circ} - \frac{1}{2} \angle A \quad [\because \text{In } \triangle \text{OBC}, \angle \text{OBC} + \angle \text{BCO} + \angle \text{COB} = 180^{\circ}]$$

$$\Rightarrow$$
 Since, $\frac{\angle B}{2} + \frac{\angle C}{2} + \angle BOC = 180^{\circ}$ as BO and OC are the angle bisectors of \angle ABC and \angle BCA, respectively $\Rightarrow 180^{\circ} - \angle BOC = 90^{\circ} - \frac{1}{2}\angle A$

$$ightarrow 180^{\circ} - \angle BOC = 90^{\circ} - rac{1}{2} \angle AC$$

∴
$$\angle BOC = 180^{\circ} - 90^{\circ} + \frac{1}{2} \angle A$$

=
$$90^{\circ} + \frac{1}{2} \times 130^{\circ}$$
 = $90^{\circ} + 65^{\circ}$ [... $\angle A$ = 130° (given)]

Hence, the required angle is 155°.

19.

Explanation:

We have,

$$\angle$$
AOF = \angle COD = 5y (vertically opposite angles)

Now, BOE is a straight line.

$$\therefore$$
 3 y + 5 y + y = 180° \Rightarrow 9y = 180° \Rightarrow y = 20°

20.

(d) 50°, 77°

Explanation:

Since AB || CD

$$\therefore$$
 x = \angle APQ = 50° (alternate angles)

In
$$\triangle$$
PQR, x + y = 127° (exterior angle property)

$$\Rightarrow$$
 y = 127°-50° \Rightarrow y = 77°

21.

(d) 70°

Explanation:

$$x + 40^{\circ} + x + x + 20^{\circ} = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow$$
 3x + 60° = 180° \Rightarrow 3x = 120° \Rightarrow x = 40°

Now,
$$\angle OCD = \angle ODC [:: OD = OC]$$

Now,
$$\angle C + \angle D + x = 180^{\circ}$$

$$\Rightarrow \angle OCD + \angle ODC + 40^{\circ} = 180^{\circ}$$

$$\Rightarrow 2\angle OCD = 140^{\circ} \Rightarrow \angle OCD = 70^{\circ}$$

22. (a) Both A and R are true and R is the correct explanation of A.

Explanation:

Both A and R are true and R is the correct explanation of A.

23.

(b) Both A and R are true but R is not the correct explanation of A.

Explanation:

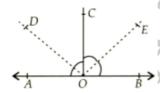
$$\angle$$
AOC + \angle BOC = 180° [Linear Pair]

$$\frac{1}{2}(\angle AOC + \angle BOC) = \frac{180^{\circ}}{2}$$

$$\frac{1}{2}$$
 \angle AOC + $\frac{1}{2}$ \angle BOC = 90°

$$\angle DOC + \angle EOC = 90^{\circ}$$

The bisectors of the angles of a linear pair are at right angles



24.

(d) A is false but R is true.

Explanation:

A is false but R is true.

25.

(d) A is false but R is true.

Explanation:

Two adjacent angles do not always form a linear pair. In a linear pair of angles, two non-common arms are opposite rays.

26. **(a)** Both A and R are true and R is the correct explanation of A.

Explanation:

Both A and R are true and R is the correct explanation of A.

Section B

27. Here, \angle AOC and \angle BOC form a linear pair.

$$\Rightarrow$$
 x° + 125° = 180°

$$\Rightarrow$$
 x° = 180° - 125° = 55°

Now.

$$\angle AOD = \angle BOC = 125^{\circ}$$
 (Vertically opposite angles)

$$y^{\circ} = 125^{\circ}$$

$$\angle BOD = \angle AOC = 55^{\circ}$$
 (Vertically opposite angles)

$$\therefore z^{\circ} = 55^{\circ}$$

28. When a ray falls on a mirror, it is reflected and angle of incidence = angle of reflection = x° (say).

QM is drawn normal to AB and therefore, we have,

angle of incidence = $\angle PQM$,

angle of reflection = $\angle MQR$

and
$$\angle AQM = 90^\circ$$

Now, we have,
$$\angle PQM + \angle MQR = \angle PQR = 112^{\circ}$$
 (given)

$$\therefore 2\angle PQM = 112^{\circ}$$

$$\therefore \angle PQM = 56^{\circ}$$

Therefore,
$$\angle PQA = \angle AQM - \angle PQM = 90^{\circ} - 56^{\circ} = 34^{\circ}$$

29. From the given figure, we have,

$$\angle$$
3 + \angle mYz = 180°(Linear pair)

$$\angle 3 + 120^{\circ} = 180^{\circ}$$

$$\angle 3 = 60^{\circ}$$

Now,

Line l∥m

$$\angle 1 = \angle 3$$
 (Corresponding angles)

$$\angle 1 = 60^{\circ}$$

Now, m ∥ n, therefore,

$$\angle 2 = 120^{\circ}$$
 (Alternate interior angle)

Therefore, we have,

$$\angle 1 = \angle 3 = 60^{\circ}$$

$$\angle 2 = 120^{\circ}$$

30. r and m are two lines and a transversal p intersects them such that x = y

These angles form a pair of equal corresponding angles.

$$\therefore$$
 r || m (1)

Similarly, m and n are two lines and a transversal q intersects them such that

These angles form a pair of equal corresponding angles.

$$\therefore$$
 m || n . . . (2)

31. AOB is a straight line. Therefore, by linear pair axiom,

$$\angle AOC + \angle COD + \angle BOD = 180^{\circ}$$

$$\Rightarrow$$
 $(3x + 7)^{\circ} + (2x - 19)^{\circ} + x^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 6x = 192°

$$\Rightarrow$$
 x = 32°

Therefore,

$$\angle AOC = 3 \times 32^{\circ} + 7 = 103^{\circ}$$

$$\angle COD = 2 imes 32^{\circ} - 19 = 45^{\circ}$$
 and

$$\angle BOD = 32^{\circ}$$

32. Let the measure of the angle be x°

$$\therefore$$
 Supplement of $x^{\circ} = (180 - x)^{\circ}$

It is given that,

$$(180^{\circ} - x^{\circ}) - x^{\circ} = 30^{\circ}$$

$$\Rightarrow$$
 180° - 2x° = 30°

$$\Rightarrow$$
 2x° = 180° - 30°

$$\Rightarrow$$
 2x° = 150°

$$\Rightarrow$$
 x° = 75°

Thus, the measure of the angle is 75°

33. $\angle POR + \angle ROQ = 180^{0}$ [linear pair]

But,
$$\angle POR : \angle ROQ = 5 : 7$$
 [Given]

$$\therefore \angle POR = \frac{5}{12} \times 180^0 = 75^0$$

Similarly,
$$\angle ROQ = \frac{7}{12} \times 180^0 = 105^0$$

Now
$$\angle POS = \angle ROQ = 105^0$$
 [vertically opposite angle]

And
$$\angle SOQ = \angle POR = 75^{0}$$
 [vertically opposite angle]

34. Let the two complementary angles be 2x and 3x.

We know that, sum of complementary angles is 90°.

$$\therefore 2x + 3x = 90^{\circ}$$

$$\Rightarrow 5x = 90^{\circ}$$

$$\Rightarrow \quad x=18^{\circ}$$

$$\therefore$$
 The angles are $2 \times 18^{\circ} = 36^{\circ}$ and $3 \times 18^{\circ} = 54^{\circ}$.

35. Let x^0 be the required angle.

Then its complementary angle = $90^{\circ} - x^{\circ}$

$$x^0 = \frac{2}{3}(90^0 - x^0)$$
 ... [given]

$$\therefore 3x^0 = 180^0 - 2x^0$$

$$3x^0 + 2x^0 = 180^0$$

$$\therefore 5x^0 = 180^0$$

$$\dot{}$$
 $\dot{}$ $\dot{}$

 \therefore there are 36° in an angle.

36. Let the measure of the required angle be x

Then, measure of its complement = $(90 - x)^{\circ}$

given that,

$$x^{\circ} = 4(90 - x)^{\circ}$$

$$\Rightarrow$$
 $x^{\circ} = 360^{\circ} - 4x^{\circ}$

$$\Rightarrow$$
 x° + 4x° = 360°

$$\Rightarrow$$
 5x° = 360°

$$\Rightarrow$$
 x° = 72°

Hence, the value of the required angle is 72°

37. Let the angle be "x"

The, its complement will be $(90^{\circ} - x)$

Now, according to question,

angle =
$$30^{\circ} + \frac{1}{2}$$
 Complement

$$x = 30^{\circ} + \frac{1}{2} (90^{\circ} - x)$$

$$x = 30^{\circ} + 45^{\circ} - \frac{x}{2}$$

$$x + \frac{x}{2} = 30^{0} + 45^{0}$$

$$\frac{3x}{2} = 75^{\circ}$$

$$3x = 150^{\circ}$$

$$x = 50^0$$

Thus, the angle is 50°

38. Given angle is 132^o

Since the sum of an angle and its supplement is 180°

Therefore, its compliment will be:

$$180^{\circ} - 132^{\circ} = 48^{\circ}$$

39. Since AOB is a straight line and the ray OC stands on it.

$$\therefore \angle AOC + \angle BOC = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle AOC + \frac{1}{2} \angle BOC = 90^{\circ}$$

$$\Rightarrow$$
 $\angle COD + \angle COE = 90^{\circ}$

$$\Rightarrow \angle DOE = 90^{\circ} \ [\because \angle COD + \angle COE = \angle DOE]$$

40. Given: AB and CD are two lines intersect each other at O.

To prove:

i.
$$\angle 1 = \angle 2$$

ii.
$$\angle 3 = \angle 4$$

Proof:

$$\angle 1 + \angle 4 = 180^{\circ}$$
 ...(i) [By linear pair]

$$\angle 4 + \angle 2 = 180^0$$
 ...(ii) [By linear pair]

$$\angle 1 + \angle 4 = \angle 4 + \angle 2$$
 [By eq (i) and (ii)]

$$\angle 1 = \angle 2$$

Similarly,

$$\angle 3 = \angle 4$$

41. $\angle POC = \angle DOQ = 2y \dots$ [Vertically opposite angles]

$$\angle$$
AOB = 180^o [A straight angle = 180^o]

$$\angle AOB + \angle POC + \angle BOC = 180^{\circ}$$

$$\angle 5y + 2y + 5y = 180^{\circ}$$

$$\angle 12y = 180^{\circ}$$

$$\angle y = \frac{180^0}{12} = 15^0$$

42. Let the measure of the required angle be x° ,

Then, its complement = $(90 - x)^{\circ}$

and its supplement = $(180 - x)^{\circ}$.

$$\therefore 7(90^{\circ} - x^{\circ}) = 3(180^{\circ} - x^{\circ}) - 10^{\circ}$$

$$\Rightarrow 630^{\circ} - 7x^{\circ} = 540^{\circ} - 3x^{\circ} - 10^{\circ}$$

$$\Rightarrow$$
 4x° = 100°

$$\Rightarrow$$
 $x^{\circ} = 25^{\circ}$

Hence, the measure of the required angle is 25°.

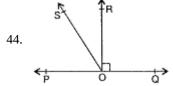
43. AOB will be a straight line if

$$3x + 20 + 4x - 36 = 180^{\circ}$$

$$\Rightarrow$$
 7x = 196°

$$\Rightarrow$$
 x = 25°

Therefore, x = 28 will make AOB a straight line



Ray OR is perpendicular to line PQ

$$\therefore$$
 \angle QOR = \angle POR = 90° (1)

$$\angle QOS = \angle QOR + \angle ROS....(2)$$

$$\angle POS = \angle POR - \angle ROS....(3)$$

From (2) and (3),

$$\therefore \angle QOS - \angle POS = (\angle QOR - \angle POR) + 2\angle ROS = 2\angle ROS \dots [Using (1)]$$

$$\therefore \angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$

45. We know that,

The sum of measures of supplementary angles is 180°

Also,

The sum of measures of complementary angles is 90°

It is given that pairs of angles are 112° and 68°

Therefore,

Sum of the measures of these angles = $112^{\circ} + 68^{\circ} = 180^{\circ}$

As the sum of these angles is equal to 180°

Therefore,

These angles are supplementary angles.

46. Let the angle measured be x

Compliment angle =
$$(90^{\circ} - x)$$

Supplement angle =
$$(180^{\circ} - x)$$

Given that,

Supplementary of thrice of the angle = $(180^{\circ} - 3x)$

According to question,

$$(90^{0} - x) = (180^{0} - 3x)$$

$$2x = 90^{\circ}$$

$$x = 45^{\circ}$$

Section C

47. In the given figure,

$$\angle POY = 90^{\circ}$$

$$\angle POX + \angle POY = 180^{\circ}$$
 (Linear pair)

$$\angle POX + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle POX = 90^{\circ}$$

$$a:b=2:3$$

Let
$$a = 2x^0$$

and
$$b = 3x^0$$

$$\angle POX = a + b = 5x$$

$$90^{\circ} = 5x$$

$$\Rightarrow$$
 x = 18°

$$\angle$$
MOX = a = 2x = 36°

$$\angle$$
MOX + \angle NOX = 180° (Linear pair)

$$a + c = 180^{\circ}$$

$$36^{\circ} + c = 180^{\circ}$$

$$c = 180^{\circ} - 36^{\circ} = 144^{\circ}$$

48. \angle BOD = \angle COA . . . [Vertically opposite angles]

$$\frac{1}{2}\angle BOD = \frac{1}{2}\angle COA...$$
 [Halves of equals are equal]

$$\angle POD = \angle COQ \dots [As OP and OQ are bisectors of $\angle BOD$ and $\angle AOC$ respectively] (1)$$

$$\angle POQ = \angle POD + \angle DOA + \angle AOQ$$

$$= \angle COQ + \angle DOA + \angle AOQ \dots [From (1)]$$

$$= \angle COD = 180^{\circ}$$

OP and OQ are opposite rays.

49. We are given that $\angle POY = 90^{\circ}$ and a:b = 2:3

We need find the value of c in the given figure.

Let a be equal to 2x and b be equal to 3x.

$$\therefore$$
 a + b = 90° \Rightarrow 2x + 3x = 90° \Rightarrow 5x = 90°

$$\Rightarrow$$
 x = 18 $^{\circ}$

Therefore
$$b=3 imes18^\circ=54^\circ$$

Now
$$b + c = 180^{\circ}$$
 [Linear pair]

$$\Rightarrow$$
 54° + c = 180°

$$\Rightarrow$$
 c = 180° - 54° = 126°

50. Ray OS stands on the line POQ

$$\therefore \angle POS + \angle SOQ = 180^{\circ}$$

But
$$\angle PQS = X$$

$$\therefore$$
 x + \angle SOQ = 180°

$$\angle$$
SOQ = 180° - x

Now ray OR bisects ∠POS,

Therefore
$$\angle ROS = \frac{1}{2} \times \angle POS = \frac{1}{2} \times x = \frac{x}{2}$$

Similarly,
$$\angle$$
 SOT = $\frac{1}{2} \times \angle SOQ = \frac{1}{2} \times (180^{0} - x) = 90^{\circ} - \frac{x}{2}$

$$\angle ROT = \angle ROS + \angle SOT = \frac{x}{2} + 90^{\circ} - \frac{x}{2} = 90^{0}$$

51. d = a . . . [Vertically opposite angles]

$$= 50^{o}$$

$$b + c + d = 180^{\circ} \dots [A \text{ straight line angle} = 180^{\circ}]$$

$$\therefore 90^{\circ} + c + 50^{\circ} = 180^{\circ}$$

$$\therefore c + 140^{\circ} = 180^{\circ}$$

$$\therefore$$
 c = $180^{\circ} - 140^{\circ}$

$$\cdot \cdot \cdot c = 40^{\circ}$$

$$f = c \dots [Vertically opposite angles]$$

$$=40^{0}$$

52. Given AD is transversal intersect two lines PQ and RS

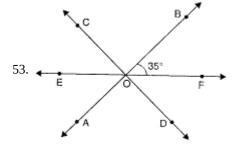
$$\angle 1 = \angle ABE = \angle EBQ = \frac{1}{2} \angle ABQ$$
 ...(i)

$$\therefore \angle 2 = \frac{1}{2} \angle BCS$$
 ...(ii)

But BE | CG and AD is the transversal

$$\therefore \frac{1}{2} \angle ABQ = \frac{1}{2} \angle BCS$$
 [by (i) and (ii)]

$$\Rightarrow \angle ABQ = \angle BCS$$
 [: corresponding angles are equal]



OF bisects
$$\angle BOD \dots$$
 [Given]

$$\angle$$
BOF = \angle DOF = 35 $^{\circ}$

$$\angle$$
COE = \angle DOF = 35 $^{\circ}$

$$\angle$$
EOF = 180° [A straight angle = 180°]

$$\therefore$$
 \angle EOC + \angle BOC + \angle BOF = 180°

$$35^{\circ} + \angle BOC + 35^{\circ} = 180^{\circ}$$

$$^{..}$$
 \angle BOC = $180^{\circ} - 70^{\circ} = 110^{\circ}$

$$\angle$$
AOD = \angle BOC . . . [Vertically opposite angles]

$$= 110^{0}$$

54.
$$a + b = 180^{\circ} \dots [Linear Pair Axiom] \dots (1)$$

$$a = b + \frac{1}{3}$$
 (a right angle) . . . [Given]

$$a=b+rac{1}{3}(90^0)\dots$$
 [right angle = 90^0]

$$\therefore a + b = 30^{\circ}$$

$$\therefore a - b = 30^{\circ} \dots (2)$$

$$2a = 180^{\circ} + 30^{\circ} \dots [Adding (1) and (2)]$$

$$\therefore 2a = 210^{\circ}$$

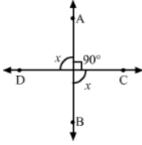
$$\therefore a = \frac{210^0}{2} = 105^0$$

$$2b = 180^{\circ} - 30^{\circ} \dots$$
 [Subtracting (2) from (1)]

$$\therefore 2b = 150^{\circ}$$

$$\therefore b = \frac{150^0}{2} = 75^0$$

55. We know that if two lines intersect, then the vertically-opposite angles are equal.



$$\angle AOC = 90^{\circ}$$
 , Then $\angle AOC = \angle BOD = 90^{\circ}$

And let
$$\angle BOC = \angle AOD = x^{\circ}$$

Also, we know that the sum of all angles around a point is 360°

$$\Rightarrow$$
 90° + 90° + x° + x° = 360°

$$\Rightarrow 2x^{\circ} = 180^{\circ}$$

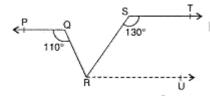
$$\Rightarrow x^{\circ}$$
 = 90°

Hence,
$$\angle BOC = \angle AOD = x^{\circ} = 90^{\circ}$$

$$\therefore \angle AOC = \angle BOD = \angle BOC = \angle AOD = 90^{\circ}$$

Hence, the measure of each of the remaining angles is 90°.

56. Draw a line RU parallel to ST through point R.



$$\angle$$
RST + \angle SRU = 180°

$$\therefore 130^{\circ} + \angle SRU = 180^{\circ}$$

$$\therefore \angle SRU = 180^{\circ} - 130^{\circ} = 50^{\circ} \dots (1)$$

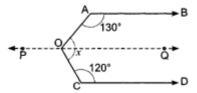
$$\angle$$
QRU = \angle PQR = 110^o [Alternate interior angles]

$$\therefore$$
 \angle QRS + \angle SRU = 110°

$$^{...}\angle QRS + 50^{\circ} = 110^{\circ} ... [Using (1)]$$

$$\therefore \angle QRS = 110^{\circ} - 50^{\circ} = 60^{\circ}$$

57. Through O, draw a line POQ parallel to AB.



From figure , $x = \angle AOQ + \angle COQ$(1)

Now $PQ \| AB$ and $CD \| AB$

So, CD||PQ

 $\therefore AB || PQ$ and AO is a transversal

We have,

$$\angle AOQ + \angle OAB = 180^{\circ}$$
 (Co interior angles)

$$\Rightarrow$$
 $\angle AOQ + 130^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle AOQ = 180^{\circ} - 130^{\circ} = 50^{\circ}$

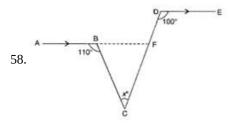
Similarly, $PQ\|CD$ and OC is a transversal

$$\therefore$$
 $\angle QOC + \angle DCO = 180^{\circ}$ (Co interior angles)

$$\Rightarrow$$
 $\angle QOC + 120^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle QOC = 180^{\circ} - 120^{\circ} = 60^{\circ}$

$$\therefore$$
 $\angle AOC = x = \angle AOQ + \angle QOC = 50^{\circ} + 60^{\circ} = 110^{\circ}$



Draw AB to meet CD in F.

As AF \parallel DE and transversal DF intersects them

$$\therefore$$
 \angle DFB = \angle EDF = 100° \dots [Alternate Angles]

$$\angle$$
DFB + \angle BFC = 180° . . . [Linear pair axiom]

$$\therefore 100^{\circ} + \angle BFC = 180^{\circ}$$

$$\therefore \angle BFC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\angle$$
ABC + \angle FBC = 180° . . . [Linear pair axiom]

∴
$$110^{\circ} + \angle FBC = 180^{\circ}$$

$$\therefore \angle FBC = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

In \triangle BFC,

$$\angle$$
BCF + \angle BFC + \angle FBC = 180 o . . . [Sum of all the angles of a triangle]

$$\therefore x^{0} + 80^{0} + 70^{0} = 180^{0}$$

$$\therefore x^0 + 150^0 = 180^0$$

$$\therefore x^0 = 180^0 - 150^0 = 30^0$$

$$\therefore x = 30^{0}$$

59.
$$\angle AOC + \angle BOC = 180^{\circ} \dots [Linear pair]$$

$$\angle AOC + \angle BOE + \angle COE = 180^{\circ} \dots [As \angle BOC = \angle BOE + \angle COE]$$

$$\therefore 2x^0 + x^0 + 90^0 = 180^0$$

$$3x^0 + 90^0 = 180^0$$

$$\therefore 3x^0 = 180^0 - 90^0 = 90^0$$

$$\therefore x^0 = \frac{90^0}{3} = 30^0 \therefore x = 30$$

$$\angle$$
BOD = \angle AOC . . . [Vertically opposite angles]

$$y^0 = 2x^0 = 2(30^0) = 60^0$$

$$\therefore$$
 y = 60

$$\angle$$
AOD = \angle COB . . . [Vertically opposite angles]

$$\therefore$$
 \angle AOD = \angle COE + \angle EOB

$$\therefore$$
 $z^0 = 90^0 + x^0 = 90^0 + 30^0 = 120^0$

60. Since AOB is a straight line, the sum of all the angles on the lower side of AOB at a point O on it, is 180°.

$$\therefore \angle AOE + \angle BOE = 180^{\circ}$$

$$\Rightarrow (3x)^{\circ}$$
 + 72° = 180°

$$\Rightarrow (3x)^{\circ} = (180^{\circ} - 72^{\circ}) = 108^{\circ}$$
$$\Rightarrow x^{\circ} = \left(\frac{108}{3}\right)^{\circ} = 36^{\circ}$$

Again, AOB is a straight line and O is a point on it.

So, the sum of all angles on the upper side of AOB at a point O on it is 180°.

$$\therefore \angle AOC + \angle COD + \angle DOB = 180^{\circ}$$

$$\Rightarrow x^{\circ} + 90^{\circ} + y^{\circ} = 180^{\circ} \ [\because \angle AOC = x^{\circ}, \angle COD = 90^{\circ} \text{ and } \angle DOB = y^{\circ}]$$

$$\Rightarrow 36^{\circ} + 90^{\circ} + y = 180^{\circ} \ [\because x = 36^{\circ}]$$

$$\Rightarrow 126^{\circ}$$
 + y = 180°

$$\Rightarrow$$
 y = $(180^{\circ} - 126^{\circ}) = 54^{\circ}$

$$\therefore \angle AOC = x^{\circ} = 36^{\circ}$$
 , $\angle BOD = y^{\circ} = 54^{\circ}$

$$\angle AOE = (3x)^{\circ} = (3 \times 36)^{\circ} = 108^{\circ}$$

61. Given: In figure, OD \perp OE (i.e. $\angle DOE = 90^{\circ}$), OD and OE are the bisectors of \angle AOC and \angle BOC.

To prove: points A, O and B are collinear i.e., AOB is a straight line.

Proof: From the fig. we have \angle AOB comprising \angle AOC and \angle BOC such that OD and OE are the bisectors of these two angles

$$\angle AOB = \angle AOC + \angle BOC$$

Since, OD and OE bisect angles ∠AOC and ∠BOC respectively.

$$\therefore \angle AOC = 2\angle DOC \qquad ... \tag{1}$$

And
$$\angle COB = 2\angle COE$$
(2)

On adding equations (1) and (2), we get

$$\angle AOC + \angle COB = 2\angle DOC + 2\angle COE$$

$$\Rightarrow \angle AOC + \angle COB = 2(\angle DOC + \angle COE)$$

$$\Rightarrow \angle AOC + \angle COB = 2\angle DOE$$

$$\Rightarrow \angle AOC + \angle COB = 2 \times 90^{\circ} \ [\because OD \perp OE]$$

$$\Rightarrow \angle AOC + \angle COB = 180^{\circ}$$

$$\therefore \angle AOB = 180^{\circ}$$

So, $\angle AOC$ and $\angle COB$ are forming linear pair or AOB is a straight line. Hence, points A, O and B are collinear.

Section D

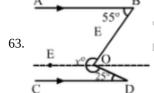
62. i. 24°

iii. 180°

OR

$$2y + z = 90^{\circ}$$

Section E



Then,
$$\angle EOB + \angle EOD = x^{\circ}$$

Now, EO \parallel AB and *BO* is the transversal.

$$\therefore \angle EOB + \angle ABO = 180^{\circ}$$
 [Consecutive Interior Angles]

$$\Rightarrow$$
 $\angle EOB + 55^{\circ} = 180^{\circ}$

$$\Rightarrow \angle EOB = 125^{\circ}$$

Again, EO || CD and DO is the transversal.

$$\therefore \angle EOD + \angle CDO = 180^{\circ}$$
 [Consecutive Interior Angles]

$$\Rightarrow$$
 $\angle EOD + 25^{\circ} = 180^{\circ}$

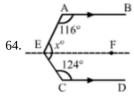
$$\Rightarrow \angle EOD = 155^{\circ}$$

Therefore,

$$x^{\circ} = \angle EOB + \angle EOD$$

$$x^{\circ} = (125 + 155)^{\circ}$$

$$x^{\circ} = 280^{\circ}$$



Draw EF || AB || CD

Then,
$$\angle AEF + \angle CEF = x^{\circ}$$

Now, EF | AB and AE is the transversal

$$\therefore \angle AEF + \angle BAE = 180^{\circ}$$
 [Consecutive Interior Angles]

$$\Rightarrow \angle AEF + 116 = 180$$

$$\Rightarrow$$
 $\angle AEF = 64^{\circ}$

Again, EF | CD and CE is the transversal.

$$\angle CEF + \angle ECD = 180^{\circ}$$
 [Consecutive Interior Angles]

$$\Rightarrow \angle CEF + 124 = 180$$

$$\Rightarrow$$
 $\angle CEF = 56^{\circ}$

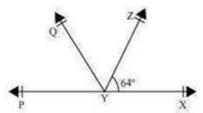
Therefore,

$$x^{\circ} = \angle AEF + \angle CEF$$

$$x^{\circ} = (64 + 56)^{\circ}$$

$$x^{\circ} = 120^{\circ}$$

65. We are given that $\angle XYZ = 64^{\circ}$, XY is produced to P and YQ bisects $\angle ZYP$ We can conclude the given below figure for the given situation:



We need to find $\angle XYQ$ and reflex $\angle QYP$

From the given figure, we can conclude that $\angle XYZ$ and $\angle ZYP$ form a linear pair.

We know that sum of the angles of a linear pair is 180°.

$$\angle$$
XYZ + \angle ZYP = 180°

But
$$\angle XYZ = 64^{\circ}$$

$$\Rightarrow$$
 64° + \angle ZYP = 180°

$$\Rightarrow \angle ZYP = 116^{\circ}$$

Ray YQ bisects ∠ZYP,or

$$\angle QYZ = \angle QYP = \frac{116^o}{2} = 58^o$$

$$\angle XYQ = \angle QYZ + \angle XYZ$$

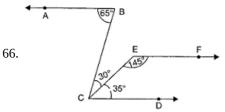
$$=58^{\circ}+64^{\circ}=122^{\circ}.$$

Reflex
$$\angle$$
QYP = 360° - \angle QYP

$$=360^{\circ} - 58^{\circ}$$

$$= 302^{\circ}$$
.

Therefore, we can conclude that $\angle XYQ = 122^{\circ}$ and Reflex $\angle QYP = 302^{\circ}$



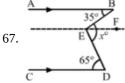
$$\angle$$
ABC = 65°

$$\angle BCD = \angle BCE + \angle ECD = 30^{\circ} + 35^{\circ} = 65^{\circ}$$

These angles form a pair of equal alternate angles

$$\angle$$
FEC + \angle ECD = 145° + 35° = 180°

These angles are consecutive interior angles formed on the same side of the transversal.



Now, AB || EF and BE is the transversal.

Then,

$$\angle ABE = \angle BEF$$
 [Alternate Interior Angles]

$$\Rightarrow \angle BEF = 35^{\circ}$$

Again, EF | CD and DE is the transversal

Then,

$$\angle DEF = \angle FED$$

$$\Rightarrow$$
 $\angle FED = 65^{\circ}$

$$\therefore x^{\circ} = \angle BEF + \angle FED$$

$$x^{\circ}$$
 = 35 $^{\circ}$ + 65 $^{\circ}$

$$x^{\circ} = 100^{\circ}$$

68. PQ intersect RS at O

$$\therefore \angle QOS = \angle POR$$
 [vert'ically opposite angles]

$$a = 4b ...(1)$$

Also,

$$a + b + 75^{\circ} = 180^{\circ} [::POQ \text{ is a straight lines}]$$

∴
$$a + b = 180^{\circ} - 75^{\circ}$$

= 105°

Using, (1)

$$4b + b = 105^{\circ}$$

Or

$$b = = \frac{105^{\circ}}{5} = 21^{\circ}$$

Now a=4b

$$a = 4 \times 21^{\circ}$$

Again,∠QOR and ∠QOS

∴
$$a + 2c = 180^{\circ}$$

Using, (2)
$$84^{\circ} + 2c = 180^{\circ}$$

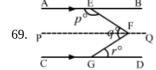
$$2c = 180^{\circ} - 84^{\circ}$$

$$2c = 96^{\circ}$$

$$c = \frac{96^0}{2} = 48^{\circ}c$$

Hence,

$$a = 84^{\circ}$$
, $b = 21^{\circ}$ and $c = 48^{\circ}$



Now, PFQ \parallel AB and EF is the transversal.

Then,

$$\angle AEF + \angle EFP = 180^{\circ}$$
 ...(i)

[Angles on the same side of a transversal line are supplementary]

Also, PFQ | CD.

$$\angle PFG = \angle FGD = r^{\circ}$$
 [Alternate Angles]

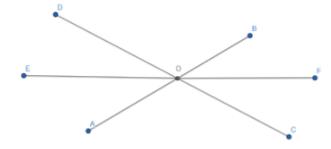
and
$$\angle EFP = \angle EFG - \angle PFG = q^{\circ} - r^{\circ}$$

putting the value of ∠EFP in equation (i)

we get,

$$p^{\circ} + q^{\circ} - r^{\circ} = 180^{\circ} [\angle AEF = p^{\circ}]$$

70. AB and CD are straight lines intersecting at O. OE the bisector of angles ∠AOD and OF is the bisector of ∠BOC.



$$\angle AOC = \angle BOD$$
 (vertically opposite angles)

Also,

OE is the bisector of $\angle AOD$ and OF is the bisector of $\angle BOC$

To prove: EOF is a straight line.

$$\angle AOD = \angle BOC = 2x$$
 (Vertically opposite angle) ...(i)

As OE and OF are bisectors.So
$$\angle AOE = \angle BOF = x(ii)$$

$$\angle AOD + \angle BOD = 180^{\circ}$$
 (linear pair)

$$\angle AOE + \angle EOD + \angle DOB = 180^{\circ}$$

From (ii)

$$\angle BOF + \angle EOD + \angle DOB = 180^{\circ}$$

$$\angle EOF = 180^{\circ}$$

EF is a straight line.

71. i. In \triangle BOD,

$$\angle$$
OBD + \angle BOD + \angle ODB = 180°

(The sum of the three angles of a triangle is 180°)

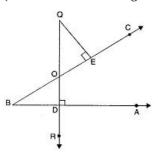
$$\Rightarrow \angle OBD + \angle BOD + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle OBD + \angle BOD = 90^{\circ} \dots (1)$$

In∆OEQ,

$$\angle EQO + \angle QOE + \angle OEQ = 180^{\circ} \dots (2)$$

(The sum of the three angles of a triangle is 180°)



$$\Rightarrow \angle EQO + \angle QOE + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle EQO + \angle QOE = 90^{\circ} \dots (2)$$

From (1) and (2), we get

$$\angle$$
OBD + \angle BOD = \angle EQO + \angle QOE

But $\angle BOD = \angle QOE$ (Vertically Opposite Angles)

∴ ∠OBD = ∠EQO

ii. Join BQ

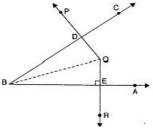
 $In\triangle BDQ$,

$$\angle$$
DBQ + \angle BQD + \angle QDB = 180 $^{\circ}$

(The sum of the three angles of a triangle is 180°)

$$\Rightarrow \angle DBQ + \angle BQD + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DBQ + \angle BQD = 90^{\circ} \dots (1)$$



In∆BQE,

$$\angle$$
EBQ + \angle BQE + \angle BEQ = 180°

(The sum of the three angles of a triangle is 180°)

$$\Rightarrow \angle EBQ + \angle BQE + 90^{\circ} = 180^{\circ}$$

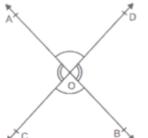
$$\Rightarrow \angle EBQ + \angle BQE = 90^{\circ}$$

Adding (1) and (2), we get

$$(\angle DBQ + \angle EBQ) + (\angle BQD + \angle BQE) = 90^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle DBE + \angle EQD = 180^{\circ}$$

$$\Rightarrow$$
 \angle DBE and \angle EQD are supplementary.



72.

Let two lines AB and CD intersect at point O.

To prove: $\angle AOC = \angle BOD$ (vertically opposite angles)

$$\angle AOD = \angle BOC$$
 (vertically opposite angles)

Proof: (i) Since, ray OA stands on the line CD.

$$\Rightarrow \angle AOC + \angle AOD = 180 \circ ... (1)$$
[Linear pair axiom]

Also, ray OD stands on the line AB.

$$\angle AOD + \angle BOD = 180^{\circ} \dots (2)$$
 [Linear pair axiom]

From equations (1) and (2), we get

$$\angle AOC + \angle AOD = \angle AOD + \angle BOD$$

$$\Rightarrow \angle AOC = \angle BOD$$

Hence, proved.

(ii) Since, ray OD stands on the line AB.

$$\therefore \angle AOD + \angle BOD = 180^{\circ} \dots (3)$$
 [Linear pair axiom]

Also, ray OB stands on the line CD.

$$\therefore \angle DOB + \angle BOC = 180^{\circ} \dots$$
 (4) [linear pair axiom]

From equations (3) and (4), we get

$$\angle AOD + \angle BOD = \angle BOD + \angle BOC$$

$$\Rightarrow \angle AOD = \angle BOC$$

Hence, proved.

73. $\angle AOF + \angle FOG = 180^{\circ} \dots [Linear pair axiom]$

$$\Rightarrow$$
 \angle AOG = 180 $^{\circ}$

$$\Rightarrow$$
 \angle AOB + \angle EOB + \angle FOE + \angle FOG = 180 $^{\circ}$

$$\Rightarrow 30^{\circ} + 90^{\circ} + \angle FOE + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle FOE + 150^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle FOE = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

$$\angle$$
AOF + \angle FOG = 180° [Linear pair axiom]

$$\Rightarrow \angle AOG = 180^{\circ}$$

$$\Rightarrow$$
 \angle AOB + \angle COB + \angle FOC + \angle FOG = 180°

$$\Rightarrow 30^{\circ} + \angle COB + 90^{\circ} + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle COB + 150^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle COB = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

$$\angle$$
FOC = 90°

$$\Rightarrow \angle FOE + \angle DOE + \angle DOC = 90^{\circ}$$

$$\Rightarrow 30^{\circ} + \angle DOE + 30^{\circ} = 90^{\circ}$$

$$\Rightarrow \angle DOE + 60^{\circ} = 90^{\circ}$$

$$\Rightarrow \angle DEO = 30^{\circ}$$

74. To Prove:
$$\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$

Given: OR is perpendicular to PQ, or \angle QOR = 90°

From the given figure, we can conclude that $\angle POR$ and $\angle QOR$ form a linear pair.

We know that sum of the angles of a linear pair is 180°.

or
$$\angle POR = 90^{\circ}$$

From the figure, we can conclude that

$$\angle POR = \angle POS + \angle ROS$$

$$\Rightarrow \angle POS + \angle ROS = 90^{\circ}$$

$$\Rightarrow \angle ROS = 90^{\circ} - \angle POS...(i)$$

Again,

$$\angle$$
QOS + \angle POS = 180°

$$\Rightarrow \frac{1}{2}(\angle QOS + \angle POS) = 90^{\circ}$$
 .(ii)

Substitute (ii) in (i), to get

$$\angle ROS = \frac{1}{2}(\angle QOS + \angle POS) - \angle POS$$

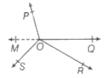
$$=\frac{1}{2}(\angle QOS - \angle POS).$$

Therefore, the desired result is proved.

75. Let us produce a ray OQ backwards to a point M, then MOQ is a straight line.

Now, OP is a ray on the line MOQ. Then, by linear pair axiom, we have

$$\angle$$
MOP + \angle POQ = 180°(i)



Similarly, OS is a ray on the line MOQ. Then, by linear pair axiom, we have

$$\angle$$
MOS + \angle SOQ = 180°(ii)

Also, \angle SOR and \angle ROQ are adjacent angles.

$$\therefore \angle SOQ = \angle SOR + \angle ROQ ...(iii)$$

On putting the value of ∠SOQ from Eq.(iii) in Eq.(ii), we get

$$\angle$$
MOS + \angle SOR + \angle ROQ = 180°(iv)

Now, on adding Eqs.(i) and (iv), we get

$$\angle$$
MOP + \angle POQ + \angle MOS + \angle SOR + \angle ROQ = 180° + 180°

 $\Rightarrow \angle MOP + \angle MOS + \angle POQ + \angle SOR + \angle ROQ = 360^{\circ}(iv)$ But $\angle MOP + \angle MOS = \angle POS$ Then, from Eq.(v), we get $\angle POS + \angle POQ + \angle SOR + \angle ROQ = 360^{\circ}$ Hence proved.

