

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

LINEAR EQUATIONS IN TWO VARIABLES

Class 09 - Mathematics

Time Allowed: 3 hours Maximum Marks:			135
	Sec	ction A	
1.	ax + by + c = 0 does not represent an equation of line	, if	[1]
	a) a = c = 0, b \neq 0	b) a = b = 0	
	c) $b = c = 0, a \neq 0$	d) c = 0, a \neq 0, b \neq 0	
2.	The equation $x = 7$ in two variables can be written as		[1]
	a) 1.x + 1.y = 7	b) $1.x + 0.y = 7$	
	c) $0.x + 1.y = 7$	d) $0.x + 0.y = 7$	
3.	Which of the following points lie on the line $y = 3x - 3x$	-4?	[1]
	a) (2, 2)	b) (4, 12)	
	c) (5, 15)	d) (3, 9)	
4.	How many lines pass through one point?		[1]
	a) one	b) three	
	c) two	d) many	
5.	How many lines pass through two points?		[1]
	a) many	b) three	
	c) two	d) only one	
6.	The linear equation $2x - 5y = 7$ has		[1]
	a) No solution	b) Infinitely many solutions	
	c) A unique solution	d) Two solutions	
7.	How many linear equations in 'x' and 'y' can be satis	sfied by $x = 1, y = 2$?	[1]
	a) Infinitely many	b) Two	
	c) Only one	d) Three	
8.		o the acceleration produced on it. The equation to represent	[1]
	the above statement is		
	a) $y = kx$	b) y = x	
	c) $y + x = 0$	d) $y - x = 0$	

9. The taxi fare in a city is as follows: For the first kilometer, the fare is ₹8 and for the subsequent distance it is ₹5 [1] per kilometer. Taking the distance covered as x km and total fare as ₹y, write a linear equation for this

information.

	a) $y = 5x + 3$	b) $y = 5x - 3$	
	c) $x = 5y - 3$	d) $x = 5y + 3$	
10.	The linear equation $3x - y = x - 1$ has :		[1]
	a) A unique solution	b) Two solutions	
	c) No solution	d) Infinitely many solutions	
11.	Write the linear equation such that each point on its g	raph has an ordinate 5 times its abscissa.	[1]
	a) y = 5x	b) x + 5y = 2	
	c) $5x + y = 2$	d) x = 5y	
12.	The equation of x-axis is		[1]
	a) y = 0	b) x = 0	
	c) y = k	d) x = k	
13.	If (-2, 5) is a solution of $2x + my = 11$, then the value	of 'm' is	[1]
	a) -2	b) 2	
	c) 3	d) -3	
14.	The equation $y = 2x - 7$ has		[1]
	a) no solution	b) two solutions	
	c) one solution	d) many solutions	
15.	The graph of the linear equation $y = x$ passes through	the point	[1]
	a) $\left(\frac{3}{2}, \frac{-3}{2}\right)$	b) $(0, \frac{3}{2})$	
	c) $\left(\frac{-1}{2}, \frac{1}{2}\right)$	d) (1 ,1)	
16.		γ was found to be ₹160. A linear equation in two variables	[1]
	to represent the above data is		
	a) x - 2y = 160	b) 2x + y = 160	
	c) x + y = 160	d) 2x - y = 160	
17.	The system of linear equations $ax + by = 0$, $cx + dy = 0$	0 has a non-trival solution if	[1]
	a) ad – bc = 0	b) ad – bc < 0	
	c) ad –bc = 0	d) ac + bd = 0	
18.	If $(4, 19)$ is a solution of the equation $y = ax + 3$, then	a =	[1]
	a) 4	b) 6	
	c) 3	d) 5	
19.	The equation $2x + 5y = 7$ has a unique solution, if x, y	y are :	[1]
	a) Rational numbers	b) Real numbers	
	c) Natural numbers	d) Positive real numbers	

2/6

20.	The graph of the linear equation $4x + y = 12$ is a line v	which meets the y-axis at the point	[1]
	a) (12, 0)	b) (4, 0)	
	c) (0, 12)	d) (0, 4)	
21.	How many linear equations can be satisfied by $x = 2$ a	nd y = 3?	[1]
	a) only one	b) three	
	c) many	d) two	
22.	The graph of the linear equation $2x + 3y = 6$ is a line w	which meets the x-axis at the point	[1]
	a) (0,3)	b) (3,0)	
	c) (2, 0)	d) (0 ,2)	
23.	The positive solutions of the equation $ax + by + c = 0$	always lie in the	[1]
	a) 3rd quadrant	b) 4th quadrant	
	c) 2nd quadrant	d) 1st quadrant	
24.	Which of the following is a linear equation in two vari	ables?	[1]
	a) $2x - 5y = 0$	b) $x + 5 = 8$	
	c) $x^2 = 5x + 3$	d) $5x = y^2 + 3$	
25.	If a pair of linear equations is consistent, then the lines	s represented by them are	[1]
	a) intersecting or coincident	b) parallel	
	c) always coincident	d) always intersecting	
26.	Which of the following pair is a solution of the equation	$\sin 3x - 2y = 7?$	[1]
	a) (-2, 1)	b) (1, -2)	
	c) (5, 1)	d) (1, 5)	
27.	Express y in terms of x in the equation $5y - 3x - 10 = 0$).	[1]
	a) $y = \frac{3-10x}{5}$	b) $y = \frac{3+10x}{5}$	
	c) $y = \frac{3x-10}{5}$	b) $y = \frac{3+10x}{5}$ d) $y = \frac{3x+10}{5}$	
28.	A linear equation in two variables is of the form ax + b	by $+ c = 0$, where	[1]
	a) a \neq 0 and b = 0	b) a = 0 and b = 0	
	c) a \neq 0 and b \neq 0	d) a = 0 and b \neq 0	
29.	x = 5 and $y = -2$ is the solution of the linear equation.		[1]
	a) $x + 3y = 1$	b) $2x + y = 9$	
	c) $3x + y = 0$	d) $2x - y = 12$	
30.	Express 'x' in terms of 'y' in the equation $2x - 3y - 5$	= 0.	[1]
	a) $x=rac{3y-5}{2}$	b) $x = \frac{3y+5}{2}$	
	C) $x=rac{5-3y}{2}$	d) $x = rac{3+5y}{2}$	
31.	Assertion (A): For all values of k, $(\frac{-3}{2}, k)$ is a solution	n of the linear equation $2x + 3 = 0$.	[1]
	Reason (R): The linear equation ax + b = 0 can be exp	pressed as a linear equation in two variables as ax + y + b	

	0.		
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
32.	Assertion (A): The equation of $2x + 5 = 0$ and $3x + 3$	y = 5 both have degree 1.	[1]
	Reason (R): The degree of a linear equation in two v	variables is 2.	
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
33.	Assertion (A): The point (1, 1) is the solution of x + Reason (R): Every point which satisfy the linear equ		[1]
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
34.	Assertion (A): The point (0, 3) lies on the graph of t	he linear equation $3x + 4y = 12$.	[1]
	Reason (R): (0, 3) satisfies the equation $3x + 4y = 1$.		
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
35.	Assertion (A): The graph of the linear equation x - 2		[1]
55.	Reason (R): Every point lying on graph is not a solu		[1]
	a) Both A and R are true and R is the correct	b) Both A and R are true but R is not the	
	explanation of A.	correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
36			[1]
50.	36. Assertion (A): There are infinite number of lines which passes through (2, 14).Reason (R): A linear equation in two variables has infinitely many solutions.		[1]
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
	Se	ction B	
37.	Write four solutions of the equation: $\pi x + y = 9$		[2]
38.	Express the linear equation $x - \frac{y}{5} - 10 = 0$ in the f case.	form $ax + by + c = 0$ and indicate the value of a, b and c in	[2]
39.	Write the linear equation represented by line AB and	PQ. Also find the co-ordinate of intersection of line AB	[2]

and PQ.

= 0.

	X = 2 $= 1$ 0 1 2 3 4 X		
	C (-2, -3)		
40.	Find four solutions for the following equation $(2(x - 1) + 3y = 4)$		
41.	Express the linear equation $2x = -5y$ in the form $ax + by + c = 0$ and indicate the value of a, b and c in case.		
42.	Find whether the given equation have $x = 2$, $y = 1$ as a solution:		
	2x - 3y + 7 = 8		
43.	Express the linear equation $2x + 3y = 9.3\overline{5}$ in the form $ax + by + c = 0$ and indicate the value of a, b and c in		
	case.		
44.	Find whether the given equation have $x = 2$, $y = 1$ as a solution:		
	2x + 3y = 7		
45.	If the length of a rectangle is decreased by 3 units and breadth increased by 4 unit, then the area will increase by		
	9 sq. units. Represent this situation as a linear equation in two variables.		
46.	Find whether (1, 1) is the solution of the equation $x - 2y = 4$ or not?		
47.	Find whether the given equation have $x = 2$, $y = 1$ as a solution:		
	5x + 3y = 14		
48.	Express the linear equation $5 = 2x$ in the form $ax + by + c = 0$ and indicate the value of a, b and c in case.		
49.	The following values of x and y are thought to satisfy a linear equation :		
	y 1 3		
50.	Cost of pen is two half times the cost of a pencil. Express this situation as a linear equation in two variable.		
51.	Find whether the given equation have $x = 2$, $y = 1$ as a solution: $x + y + 4 = 0$.		
52.	Find whether the given equation have $x = 2$, $y = 1$ as a solution:		
	x + y + 4 = 0		
53.	Write two solutions of the form $x = 0$, $y = a$ and $x = b$, $y = 0 : -4x + 3y = 12$		
54.	Express the linear equation $-2x + 3y = 6$ in the form $ax + by + c = 0$ and indicate the value of a, b and c in case.		
55.	Find four solutions for the following equation : $x - y = 0$		
56.	If $x = 3k + 2$ and $y = 2k - 1$ is a solution of the equation $4x - 3y + 1 = 0$, find the value of k.		
57.	Find whether the given equation have $x = 2$, $y = 1$ as a solution:		
	2x + 5y = 9		
58.	Express x in terms of y for the linear equation $\frac{2}{3}x + 4y = -7$.		
	Section C		
59.	Find solutions of the form $x = a$, $y = 0$ and $x = 0$, $y = b$ for the following pairs of equations. Do they have any		

common such solution?

3x + 2y = 6 and 5x + 2y = 10

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[3]

60.	Find at least 3 solutions for the following linear equation in two variables:	[3]			
	2x + 3y = 4	[-]			
61.	Find four solutions for the following equation: $12x + 5y = 0$	[3]			
62.	Write linear equation $3x + 2y = 18$ in the form of $ax + by + c = 0$. Also write the values of a, b and c. Are (4, 3)	[3]			
	and (1, 2) solution of this equation?				
63.	For what value of c, the linear equation $2x + cy = 8$ has equal values of x and y for its solution?	[3]			
64.	Let y varies directly as x. If $y = 12$ when $x = 4$, then write a linear equation. What is the value of y when $x = 5$?	[3]			
65.	Find at least 3 solutions for the following linear equation in two variables:	[3]			
	2x + 5y = 13				
66.	Find at least 3 solutions for the following linear equation in two variables: $2x - 3y + 7 = 0$				
67.	Find at least 3 solutions for the following linear equation in two variables: $x + y - 4 = 0$	[3]			
68.	Find the solution of the linear equation $x + 2y = 8$ which represents a point on	[3]			
	i. The x-axis				
	ii. The y-axis				
69.	Find at least 3 solutions for the following linear equation in two variables: $5x + 3y = 4$.	[3]			
70.	Find at least 3 solutions for the linear equation $2x - 3y + 7 = 0$.				
71.	Find solutions of the form $x = a$, $y = 0$ and $x = 0$, $y = b$ for the following pairs of equations. Do they have any				
	common such solution for equations $9x + 7y = 63$ and $x + y = 10$				
72.	Find solutions of the form $x = a$, $y = 0$ and $x = 0$, $y = b$ for the following pairs of equations. Do they have any	[3]			
	common such solution?				
	5x + 3y = 15 and $5x + 2y = 10$				
73.	A family spends Rs. 500 monthly as a fixed amount on milk and extra milk costs Rs.20 per kg. Taking quantity	[3]			
	of extra milk as x and total expenditure on milk as y. Write a linear equation and fill the table.				
	x 0 - 2				
	y - 1000 -				
	Section D				

- Solve for x: $\frac{3x+2}{7} + \frac{4(x+1)}{5} = \frac{2}{3}(2x+1)$ Find five different solutions of the equation: 3y = 4x74.
- 75.

[5]

[5]