Solution

HERON'S FORMULA

Class 09 - Mathematics

Section A

1. **(a)** $\frac{15\sqrt{7}}{4}$ cm

Explanation:

We have, sides of triangle 11 cm, 15 cm and 16 cm. $\therefore s = \frac{11+15+16}{2} = 21 \text{ cm}$ $\therefore \text{ Area of triangle} = \sqrt{21(21-11)(21-15)(21-16)}$ $= 30\sqrt{7} \text{ cm}^2$ Let altitude to the largest side be h cm $\therefore \frac{1}{2} \times 16 \times h = 30\sqrt{7} \Rightarrow 8h = 30\sqrt{7}$ $\Rightarrow h = \frac{15\sqrt{7}}{7} \text{ cm}$

2. (a)
$$8\sqrt{5}$$
cm²

Explanation:

Area of isosceles triangle $= \frac{b}{4}\sqrt{4a^2 - b^2}$ Here,

a = 6 cm and b = 8 cm

Thus, we have

$$rac{8}{4} imes \sqrt{4(6)^2 - 8^2} = rac{8}{4} imes \sqrt{144 - 64} = rac{8}{4} imes \sqrt{144 - 64} = rac{8}{4} imes \sqrt{80} = rac{8}{4} imes 4\sqrt{5} = 8\sqrt{5} \mathrm{cm}^2$$

3.

(d) $25\sqrt{3}$ cm²

Explanation:

```
Area of equilateral triangle = \frac{\sqrt{3}}{4} (Side)<sup>2</sup>
= \frac{\sqrt{3}}{4} (10)<sup>2</sup>
= 25\sqrt{3} sq. cm
```

4. **(a)** ₹ 2142

Explanation:

We have, $s = \frac{1}{2}(51 + 37 + 20)m = 54 m$ ∴ Area = $\sqrt{54(54 - 51)(54 - 37)(54 - 20)}$ = $\sqrt{54 \times 3 \times 17 \times 34} m^2 = 306 m^2$ ∴ Cost of levelling the field = ₹(306 × 7) = ₹ 2142

5.

(c) $5\sqrt{3}$ cm

Explanation: Height of equilateral triangle $=\frac{\sqrt{3}}{2} \times$ Side $=\frac{\sqrt{3}}{2} \times 10$ $= 5\sqrt{3}$ cm

6.

(d) $1500\sqrt{3} \text{ m}^2$ Explanation: Let the sides of the triangle be a = 3x, b = 5x, c = 7xPerimeter of triangle = 300 m $\Rightarrow 3x + 5x + 7x = 300 \Rightarrow 15x = 300 \Rightarrow x = 20$ $\therefore a = 3 \times 20 = 60 \text{ m}, b = 5 \times 20 = 100 \text{ m},$ $c = 7 \times 20 = 140 \text{ m}$ Now, $s = \frac{300}{2} = 150 \text{ m}$ \therefore Area of triangle $\sqrt{150(150 - 60)(150 - 100)(150 - 140)}$ $= \sqrt{150 \times 90 \times 50 \times 10} \text{ m}^2 = 1500\sqrt{3} \text{ m}^2.$

7.

(b) 24 cm² Explanation: Perpendicular = $\sqrt{10^2 - 8^2} = \sqrt{100 - 64} = 6$ cm Area of triangle = $\frac{1}{2} \times$ Base \times Height = $\frac{1}{2} \times 8 \times 6 = 24$ sq. cm

8.

(c) $16\sqrt{3}$ cm² Explanation: Here, $x\sqrt{3} = \sqrt{48}$ $\Rightarrow x = \sqrt{16}$ Side = 2x Area of equilateral triangle = $\frac{\sqrt{3}}{4}$ (Side)² = $\frac{\sqrt{3}}{4}(2x)^2$ = $\sqrt{3}x^2$ sq. cm = $\sqrt{3}(\sqrt{16})^2 = 16\sqrt{3}$

9.

(c) ₹ 14.95 Explanation: Area of I = $\frac{\sqrt{3}}{\frac{4}{3}} \times (10)^2 = 25\sqrt{3} \text{ cm}^2 = 43.3 \text{ cm}^2$ (II) $s = \frac{10+9+3}{2} = 11 \text{ cm}$ \therefore Area of II = $2\sqrt{11 \times 1 \times 2 \times 8} = 8\sqrt{11} \text{ cm}^2 = 26.56 \text{ cm}^2$ (IV) $s = \frac{20+20+4}{2} = 22 \text{ cm}$ \therefore Area of IV = $2\sqrt{22 \times 2 \times 2 \times 18}$ = $24\sqrt{11} \text{ cm}^2 = 79.68 \text{ cm}^2$ \therefore Total area of coloured paper used = $(43.3 + 26.56 + 79.68) \text{ cm}^2 = 149.54 \text{ cm}^2$ Cost of coloured paper used = $\frac{10}{100} \times 149.54 = ₹14.95$

10.

(d) 300 % Explanation: Area of triangle with sides a, b, c (A) = $\sqrt{s(s-a)(s-b)(s-c)}$ New sides are 2a, 2b and 2c Then $s' = \frac{2a+2b+2c}{2} = a+b+c$ \Rightarrow s' = 2s(i) New area = $\sqrt{s'(s'-2a)(s'-2b)(s'-2c)}$ = $\sqrt{2s(2s-2a)(2s-2b)(2s-2c)}$ $= 4\sqrt{s(s-a)(s-b)(s-c)}$ = 4A Increased area = 4A - A = 3A % of increased area = $\frac{3A}{A} \times 100 = 300\%$

11. **(a)** 3k

Explanation:

Semiperimeter of scalene triangle of side k, 2k and $3k = \frac{k+2k+3k}{2} = 3k$

12. (a) largest

Explanation:

Length of the perpendicular drawn on the smallest side of the scalene triangle is largest.

13.

(c) 12.29 cm²

Explanation:
Here a = 11 cm, b = 4 cm, c = 8 cm
$$\therefore s = \frac{11+4+8}{2} = \frac{23}{2} = 11.5 \text{ cm}$$

Area
 $= \sqrt{11.5 \times (11.5 - 11) \times (11.5 - 4) \times (11.5 - 8)}$
 $= \sqrt{11.5 \times 0.5 \times 7.5 \times 3.5} = \sqrt{150.94} = 12.29 \text{ cm}^2$

14.

(d) 20 cm Explanation:

Given: s - a = 8 cm, s - b = 7 cm and s - c = 5 cm Adding all equations, s - a + s - b + s - c = 8 + 7 + 5 $\Rightarrow 3s - (a + b + c) = 20 [s = \frac{a+b+c}{2}]$ $\Rightarrow 3s - 2s = 20$ $\Rightarrow s = 20$ cm

15. **(a)** $24\sqrt{5}$ cm

Explanation:

Since longest altitude is drawn opposite to the shortest side in a triangle.

Area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Height}$ $\Rightarrow 420\sqrt{5} = \frac{1}{2} \times 35 \times \text{Height}$ $\Rightarrow \text{Height} = \frac{420\sqrt{5} \times 2}{35} = 24\sqrt{5} \text{ cm}$

16.

(c) 294 cm²

Explanation: Let the sides be 3x, 4x and 5x. Then according to quesiton, 3x + 4x + 5x = 84 $\Rightarrow 12x = 84$ $\Rightarrow x = 7$ Therefore, the sides are $3 \times 7 = 21$, cm, $4 \times 7 = 28$ cm and $5 \times 7 = 35$ cm

$$s = \frac{21+28+35}{2} = 42 \text{ cm}$$
Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{42(42-21)(42-28)(42-35)}$
= $\sqrt{42 \times 21 \times 14 \times 7}$
= $21 \times 7 \times 2 = 294$ sq. cm

(b) 450 cm² **Explanation:** 30 cm R 30 cm Since triangle ABC is an isosceles triangle. Base = 30Hence, height = 30 cm \Rightarrow Area of triangle ABC = $\frac{1}{2} \times AB \times BC = \frac{1}{2} \times 30 \times 30 = 450 {\rm cm}^2$ (c) $12\sqrt{5}$ cm² **Explanation:** Let a = 7 cm, b = 9 cm, c = 14 cm Semi-perimeter = s = $\frac{a+b+c}{2} = \frac{7+9+14}{2} = 15$ cm s - a = 15 - 7 = 8cm, s - b = 15 - 9 = 6 cm and s - c = 15 - 14 = 1 cm Are of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{15 \times 8 \times 6 \times 1}$ $=\sqrt{5 \times 3 \times 4 \times 2 \times 3 \times 2}$

18.

19.

(b) 64 cm

 $= 12\sqrt{5}$ cm²

Explanation:

Let the each of the other two equal sides of an isosceles triangle be a cm. Then, $s = \frac{a+a+24}{2} = (a + 12)$ cm Area of triangle = 192 cm² $\Rightarrow \sqrt{(a+12)(a+12-a)(a+12-a)(a+12-24)} = 192$ $\Rightarrow 144 (a^2 - 144) = (192)^2$ $\Rightarrow a^2 = 400 \Rightarrow a = 20$ cm \therefore Perimeter = 20 + 20 + 24 = 64 cm

20. (a) 30 cm

Explanation:

Let the sides of $\triangle ABC$ be a, b, c Then, (s - a) = 7 cm, (s - b) = 5 cm and (s - c) = 3 cm \Rightarrow (s - a) + (s - b) + (s - c) = 15 \Rightarrow 3s - (a + b + c) = 15 \Rightarrow 3s - 2s = 15 $\left[\because s = \frac{a+b+c}{2}\right]$ \Rightarrow s = 15 cm ∴ Perimeter = 2 × 15 = 30 cm

21.

(d) A is false but R is true.

Explanation:

Area of an equilateral triangle = $\frac{\sqrt{3}}{4}a^2$, where a is side of triangle $81\sqrt{3} = \frac{\sqrt{3}}{4}a^2$ $81 \times 4 = a^2$ $324 = a^2$ a = 18 cm $s = \frac{18+18+18}{2} = 27 \text{ cm}$

22.

(c) A is true but R is false.

Explanation:

$$s = \frac{a+b+c}{2}$$

$$s = \frac{3+4+5}{2} = 6 \text{ cm}$$

Area = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{(6)(6-3)(6-4)(6-5)}$
= $\sqrt{(6)(3)(2)(1)} = 6 \text{ cm}^2$

23. (a) Both A and R are true and R is the correct explanation of A.

Explanation:

Assertion: Area of $\triangle = \frac{1}{2} \times$ base \times height $72 = \frac{1}{2} \times 18 \times b$ $b = \frac{72 \times 2}{18} = 8 \text{ cm}$

24.

(d) A is false but R is true.

Explanation:

The height of the triangle,

$$h = \frac{\sqrt{3}}{2}a$$

$$9 = \frac{\sqrt{3}}{2}a$$

$$a = \frac{9 \times 2}{\sqrt{3}} = \frac{18}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{18\sqrt{3}}{3} = 6\sqrt{3} \text{ cm}$$

25.

(d) A is false but R is true. Explanation: $s = \frac{6+6+6}{2} = \frac{18}{2} = 9 \text{ cm}$ Area = $\sqrt{9(9-6)(9-6)(9-6)}$ = $\sqrt{9 \times 3 \times 3 \times 3} = 9\sqrt{3} \text{ cm}^2$

26. **(a)** Both A and R are true and R is the correct explanation of A. **Explanation:**

$$A$$

$$a$$

$$a$$

$$b$$

$$b$$

$$c$$

$$a + b + c = 60$$

$$a + b + 26 = 60$$

$$a + b + 26 = 60$$

$$a + b = 34 ..(i)$$
Now, $26^2 = a^2 + b^2 ..(ii)$
Squaring (1) both sides, we get
$$(a + b)^2 = (34)^2$$

$$a^2 + b^2 + 2ab = 34 \times 34$$

$$(26)^2 + 2ab = 1156 \text{ [From (ii)]}$$

$$2ab = 1156 - 676$$

$$2ab = 480$$

$$ab = 240 ...(iii)$$
Now, $a + \frac{240}{a} = 34 \text{ [From (i) and (iii)]}$

$$a^2 - 24a - 10a + 240 = 0$$

$$a(a - 24) - 10(a - 24) = 0$$

$$a = 10, 24$$
Now, other sides are 10 cm and 24 cm
$$s = \frac{26 + 10 + 24}{2} = 30 \text{ cm}$$
Area of triangle = $\sqrt{30(30 - 26)(30 - 10)(30 - 24)}$

$$= \sqrt{30 \times 4 \times 20 \times 6} = 120 \text{ cm}^2$$
(a) Both A and R are true and R is the correct explanation of A.
Explanation:
$$510 = a + b + c$$

$$510 = 25x + 14x + 12x$$

$$510 = 51x$$

$$x = 10$$
Three side of the triangle are
$$25x = 25 \times 10 = 250 \text{ cm}$$

$$14x = 14 \times 10 = 140 \text{ cm and}$$

$$12x = 12 \times 10 = 120 \text{ cm}^2$$

$$a = \frac{260 + 140 + 120}{2} = 255 \text{ cm}$$

$$Area = \sqrt{255 \times 5 \times 115 \times 135}$$

$$= 4449.08 \text{ cm}^2$$

Section B

28. We have:

27.

a = 13 cm and b = 20 cm ∴ Area of an isosceles triangle = $\frac{b}{4}\sqrt{4a^2 - b^2}$ = $\frac{20}{4} \times \sqrt{4(13)^2 - 20^2}$ = $5 \times \sqrt{676 - 400}$ = $5 \times \sqrt{276}$ = 5×16.6

Area of an isosceles triangle = 83.6 cm^2

29. Let \triangle PQR be an isosceles triangle and PX \perp QR. Now, Area of triangle = 360 cm^2 $\Rightarrow \frac{1}{2} \times QR \times PX = 360$ $\Rightarrow h = \frac{720}{80} = 9 \text{cm}$ Now, $QX = \frac{1}{2} \times 80 = 40$ cm and PX = 9 cm Also, by Pythagoras theorem for $\triangle PXQ$ $PX^2 + QX^2 = PQ^2$ $\Rightarrow a^2 = (40)^2 + 9^2$ $a = \sqrt{40^2 + 9^2} = \sqrt{1600 + 81} = \sqrt{1681} = 41$ cm ... Perimeter = 80 + 41 + 41 = 162 cm 30. Let the equal sides of an isosceles right triangle are a cm. And its area = 8 cm^2 So, Area $= \frac{1}{2}a^2$ $\Rightarrow \frac{1}{2}a^2 = 8$ $\Rightarrow a^2 = 16$ \Rightarrow a = 4 cm Hypotenuse = $\sqrt{2}a = \sqrt{2}(4) = 4\sqrt{2}cm$. 31. Area of an equilateral triangle = $\frac{\sqrt{3}}{4} \times ($ Side $)^2$ $\Rightarrow rac{\sqrt{3}}{4} imes$ (Side) $^2 = 36\sqrt{3}$ \Rightarrow (Side)² = 144 \Rightarrow Side = 12 cm Thus, we have: Perimeter = $3 \times$ Side = $3 \times 12 = 36$ cm Hence, Perimeter = 36 cm 32. Let the equal sides of the isosceles triangle be *a* cm each. \therefore Base of the triangle, $b = \frac{3}{2}a$ cm Perimeter of triangle = 42 cm \Rightarrow a + a + $\frac{3}{2}$ a = 42 $\Rightarrow \frac{7}{2}a = 42 \Rightarrow a = 12 \text{ cm}$ and $b = \frac{3}{2}(12)$ cm = 18 cm Area of triangle = 71.42 cm^2 $\Rightarrow \frac{1}{2} \times \text{Base} \times \text{Height} = 71.42$ \Rightarrow Height = $\frac{71.42 \times 2}{18}$ = 7.94 cm

33. Let $\triangle ABC$ be an isosceles triangle and let $AL \perp BC$

 $\therefore \frac{1}{2} \times BC \times AL = 192 \text{cm}^2$ $\Rightarrow \frac{1}{2} \times 24 \text{cm} \times h = 192 \text{cm}^2$ $\Rightarrow h = \left(\frac{192}{12}\right) \text{cm} = 16 \text{cm}$ Now, $BL = \frac{1}{2}(BC) = \left(\frac{1}{2} \times 24\right) \text{cm} = 12 \text{ cm}$ and AL = 16 cm. In $\triangle ABL \ AB^2 = BL^2 + AL^2$ $\Rightarrow a^2 = BL^2 + AL^2$ $\Rightarrow a^2 = BL^2 + AL^2$ $\Rightarrow a = \sqrt{BL^2 + AL^2} = \sqrt{(12)^2 + (16)^2} \text{cm} = \sqrt{144 + 256} \text{cm}$ $\Rightarrow a = \sqrt{400} \text{cm} = 20 \text{cm}$ Hence, perimeter = (20 + 20 + 24) cm = 64 cm.

34. It is given that the sides of a triangle are 8 cm, 15 cm, and 17 cm.

So, a = 8cm, b = 15cm, c = 17cm

$$s = \frac{a+b+c}{2} = \frac{8+15+17}{2} = \frac{40}{2} = 20cm$$

 $\therefore Area = \sqrt{s(s-a)(s-b)(s-c)}$
 $= \sqrt{20(20-8)(20-15)(20-17)}$
 $= \sqrt{20 \times 12 \times 5 \times 3} = 60cm^2$

Hence the area of given triangle is 60 cm².

Let a, b, c be the sides of the given triangle and 2s be its perimeter such that a = 8 cm, b = 11 cm and 2s = 32 cm i.e. s = 16 cm Now, a + b + c = 2s $\Rightarrow 8 + 11 + c = 32$ $\Rightarrow c = 13$

∴ s - a = 16 - 8 = 8, s - b = 16 - 11 = 5 and s - c = 16 - 13 = 3 Hence, Area of given triangle = $\sqrt{s(s - a)(s - b)(s - c)}$

 $=\sqrt{16\times8\times5\times3}=8\sqrt{30}\ \mathrm{cm}^2$

36. For isosceles triangles two of it's sides are equal so sides are a = 10, b = 10, c = 6

$$S = \frac{10+10+6}{2} = \frac{26}{2} = 13cm$$

: Area of tringle=
$$\sqrt{13}$$
 (13 – 10) (13 – 10) (13 – 6) sq cm

$$=\sqrt{13 \times 3 \times 3 \times 7}$$
 sq cm

$$= 3\sqrt{91}$$
 sq cm

37. The perimeter of the given equilateral triangle = 60 cm As every side of the equilateral triangle is equal. Length of each of its sides = $a = \frac{60}{3}$ cm = 20 cm Area of the triangle = $\left(\frac{\sqrt{3}}{4} \times a^2\right)$ sq units = $\left(\frac{\sqrt{3}}{4} \times 20 \times 20\right)$ cm² = $(100 \times \sqrt{3})$ cm² = (100×1.732) cm² $= 173.2 \text{ cm}^2$

Hence, the area of the given triangle is 173.2 cm^2 .

There, the area of the triangle is 17.3 c th i
18.
$$a^{2} = a, b^{2} = a^{2}$$

29. $a^{2} = \frac{(a + b^{2} + c^{2})}{2}$
20. Area of the equilateral triangle
 $= \sqrt{s(s - c^{2})(s - b^{2})(s^{-} - c^{2})}$
 $= \sqrt{\frac{3a}{2}(\frac{2a}{2} - a)(\frac{2a}{2} - a)(\frac{2a}{2} - a)}(\frac{2a}{2} - a)$
 $= \sqrt{\frac{3a}{2}(\frac{2a}{2})(\frac{2}{2})(\frac{2}{2})}(\frac{2}{2})$
 $= \sqrt{\frac{3a}{2}(\frac{2}{2})(\frac{2}{2})(\frac{2}{2})}(\frac{2}{2})$
 $= \sqrt{\frac{3a}{2}(\frac{2}{2})(\frac{2}{2})(\frac{2}{2})}(\frac{2}{2})$
 $= \sqrt{\frac{3a}{2}(\frac{2}{2})(\frac{2}{2})(\frac{2}{2})}(\frac{2}{2})$
 $= \sqrt{\frac{3a}{2}(\frac{2}{2})(\frac{2}{2})(\frac{2}{2})}(\frac{2}{2})$
 $= \sqrt{\frac{3a}{2}(\frac{2}{2})(\frac{2}{2})(\frac{2}{2})(\frac{2}{2})}(\frac{2}{2})($

 $S = \frac{15+11+6}{2} = \frac{32}{2} = 16 m$ Now, Using Heron's formula, Area of coloured triangular wall

 $= \sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{16(16-15)(16-11)(16-6)}$ = $\sqrt{16 \times 1 \times 5 \times 10}$ = $20\sqrt{2}m^2$

Hence area painted in blue colour = $20\sqrt{2}m^2$

44. i. (c) $15\sqrt{130} \times 50 \times 50 \times 30$

ii. $32\sqrt{6}$ cm²

- 45. i. (b) $2.15 \times 0.35 \times 0.65 \times 1.15$
 - ii. No, we don't have enough information to say that the area reserved for animals is double the area reserved for the zoo authorities. The area reserved under zone 1 = area reserved under zone 2 + 3, but we cannot say the area reserved under zone 2 and 3 are equal.

Section C

46. For the triangle having the sides 122 m, 120 m and 22 m:

 $s = \frac{122 + 120 + 22}{2} = 132$ Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{132(132-122)(132-120)(132-22)}$ $=\sqrt{132 imes10 imes12 imes110}$ $= 1320 \text{ m}^2$ For the triangle having the side 22m, 24m and 26m: $s = \frac{22+24+26}{2} = 36$ Area of the triangle = $\sqrt{36(36 - 22)(36 - 24)(36)}$ $\overline{26}$ $=\sqrt{36 imes14 imes12 imes10}$ $= 24\sqrt{105}$ $= 24 \times 10.25 \text{ m}^2$ (approx.) $= 246 \text{ cm}^2$ Therefore, the area of the shaded portion. = Area of larger triangle - Area of smaller (shaded) triangle. $= (1320 - 246) \text{ m}^2$

$$= 1074 \text{ m}^2$$

47. The sides of triangular side walls of flyover which have been used for advertisements are 13 m, 14 m, 15 m.

$$s = \frac{13+14+15}{2} = \frac{42}{2} = 21m$$

= $\sqrt{21(21-13)(21-14)(21-15)}$
= $\sqrt{21 \times 8 \times 7 \times 6}$
= $\sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 3 \times 2}$
= $7 \times 3 \times 2 \times 2 = 84m^2$

It is given that the advertisement yield an earning of Rs. 2,000 per m² a year.

 \therefore Rent for 1 m² for 1 year = Rs. 2000

So, rent for 1 m² for 6 months or $\frac{1}{2}year = Rs(\frac{1}{2} \times 2000) = Rs.$ 1,000.

:. Rent for 84 m² for 6 months = Rs. (1000 × 84) = Rs. 84,000.

48. True, Let a = 51m, b = 37m, c = 20m

$$s = \frac{a+b+c}{2} = \frac{51+37+20}{2} = \frac{108}{2} = 54m$$

∴ Area of triangular ground = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{54(54-51)(54-37)(54-20)}$
= $\sqrt{54 \times 3 \times 17 \times 34}$
= $\sqrt{9 \times 3 \times 2 \times 3 \times 17 \times 17 \times 2}$
= $3 \times 3 \times 2 \times 17$
= 306 m²

Cost of leveling the ground = Rs.3 \times 306 = Rs.918.

Hence the cost of leveling the ground in the form of a triangle is Rs 918.

49. Given: = 122 m, = 22 m and = 120 m Semi-perimeter of triangle (s) = $\frac{122+22+120}{2} = \frac{264}{2} = 132$ m Using Heron's Formula, Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{132(132-122)(132-22)(132-120)}$ $=\sqrt{132 imes10 imes110 imes12}$ $=\sqrt{11 imes12 imes10 imes10 imes11 imes12}$ $= 10 \times 11 \times 12$ $= 1320 \text{ m}^2$ \therefore Rent for advertisement on wall for 1 year = Rs. 5000 per m^2 \therefore Rent for advertisement on wall for 3 months for 1320 m²; $\frac{5000}{12} \times 3 \times 1320$ = Rs.1650000 Hence rent paid by company = Rs. 16,50,000 50. 'a' = a, 'b' = a and 'c' = a. ∴ $s = \frac{'a' + 'b' + 'c'}{2} = \frac{a + a + a}{2} = \frac{3a}{2}$ \therefore Area of the signal board $egin{aligned} &= \sqrt{s(s-'\,a')(s-'\,b')(s-'\,c'}\) \ &= \sqrt{rac{3a}{2}\left(rac{3a}{2}-a
ight)\left(rac{3a}{2}-a
ight)\left(rac{3a}{2}-a
ight)\left(rac{3a}{2}-a
ight)} \end{aligned}$ $=\sqrt{rac{3a}{2}\left(rac{a}{2}
ight)\left(rac{a}{2}
ight)\left(rac{a}{2}
ight)}=\sqrt{rac{3a^4}{16}}=rac{\sqrt{3}}{4}a^2$ Perimeter = 180 cm 'a' + 'b' + 'c' = 180 $\therefore a + a + a = 180$ ∴ 3a = 180 ∴ a = 60 cm. \therefore Area of the signal board = $\frac{\sqrt{3}}{4}a^2$ $=rac{\sqrt{3}}{4}(60)^2=900\sqrt{3}\,cm^2$ Alternatively, $s = \frac{3a}{2} = \frac{3}{2}(60) = 90 \, cm$ Area of the signal board $= \sqrt{s(s-'a')(s-'b')(s-'c')}$ $=\sqrt{90(90-60)(90-60)(90-60)}$ $=\sqrt{90(30)(30(30))}$ $=900\sqrt{3}$ cm² 51. 7x Suppose that the sides in metres are 3x, 5x and 7x. Then, we know that 3x + 5x + 7x = 300 (Perimeter of the triangle) Therefore, 15x = 300, which gives x = 20. So the sides of the triangles are 3 \times 20 m, 5 \times 20 m and 7 \times 20 m i.e., 60m, 100m and 140m. We have $s = \frac{60+100+140}{2} = 150 \text{ m}$ and area will be = $\sqrt{150(150-60)(150-100)(150-140)}$ $=\sqrt{150 \times 90 \times 50 \times 10}$ $= 1500\sqrt{3} \text{ m}^2$

52. $S = \frac{a+a+a}{2}$ units $= \frac{3a}{2}units$ $\therefore \text{Area of triangle} = \sqrt[7]{\frac{3a}{2} \times (\frac{3a}{2} - a)(\frac{3a}{2} - a)(\frac{3a}{2} - a)}$ $=\sqrt{\frac{3a}{2}\times\frac{a}{2}\times\frac{a}{2}\times\frac{a}{2}}$ $=\frac{a^2}{4}\sqrt{3}$ sq units Now, perimeter = 180 cm \therefore each side $=\frac{180}{3}=60cm$ Using above derived formula \therefore Area of signal board = $\frac{\sqrt{3}}{4}$ (60)² sq cm = 900 $\sqrt{3}$ sq cm 53. As the sides of the equal to the base of an isosceles triangle is 3 : 2, so let the sides of an isosceles triangle be 3x, 3x and 2x. Now, perimeter of triangle = 3x + 3x + 2x = 8xGiven Perimeter of triangle = 32 m $\therefore 8x = 32; x = 32 \div 8 = 4$ So, the sides of the isosceles triangle are $(3 \times 4)cm$, $(3 \times 4)cm$, $(2 \times 4)cm$ i.e., 12 cm, 12 cm and 8cm $\therefore s = \frac{12+12+8}{2} = \frac{32}{2} = 16cm$ $=\sqrt{16(16-12)(16-12)(16-8)}$ $=\sqrt{16 imes 4 imes 4 imes 8}=\sqrt{4 imes 4 imes 4 imes 4 imes 2}$ $=4 imes 4 imes 2\sqrt{2}=32\sqrt{2}cm^2$ 54. Let a = 41m, b = 40m, c = 9m. $s = \frac{a+b+c}{2} = \frac{41+40+9}{2} = \frac{90}{2}$ s = 45mArea of triangular field = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{45(45-41)(45-40)(45-9)}$ $=\sqrt{45 imes4 imes5 imes36}$ $=180 \text{ m}^2$ $=1800000 \text{ cm}^{2}$ $\frac{1800000}{1} = 2000$ Number of rose beds = Area needed for one rose bed Total area 55. Let the sides of the triangle be x,2x,3x Perimeter of the triangle = 480 m $\therefore x + 2x + 3x = 480m$ 6x = 480mx = 80m∴ The sides are 80m, 160m, 240m so, $S = \frac{80 + 160 + 240}{2} = \frac{480}{2}$ = 240 m And, .**`**. Area of triangle $= \sqrt{s(s-a)(s-b)(s-c)} sqm$ $=\sqrt{240(240-80)(240-160)(240-240)}$ sqm = 0 sq m... Triangle doesn't exit with the ratio 1:2:3 whose perimeter is 480 m. 56. a = 8 cm, b = 8 cm, c = 8 cm. $s = \frac{a+b+c}{c}$ $\therefore \frac{8+8+8}{2}m = 12 \,\mathrm{cm}$: Area of the equilateral triangle $s = \sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{12(12-8)(12-8)(12-8)}$ $=\sqrt{12(4)(4)(4)}$ $=\sqrt{(4)(3)(4)(4)(4)}$ $=16\sqrt{3}$ cm²

Area = $\frac{1}{2}$ × Base × Altitude $=16\sqrt{3} = \frac{1}{2} \times 8 \times \text{Altitude}$ $=16\sqrt{3}$ = 4 Altitude Altitude = $\frac{16\sqrt{3}}{4} = 4\sqrt{3}$ cm. 57. Let the Traffic signal board is ΔABC . According to question, Semi-perimeter of $\triangle ABC$ (s) = $\frac{a+a+a}{2} = \frac{3a}{2}$ Using Heron's Formula, Area of triangle ABC = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{rac{3a}{2}\left(rac{3a}{2}-a
ight)\left(rac{3a}{2}-a
ight)\left(rac{3a}{2}-a
ight)}$ $=\sqrt{\frac{3a}{2}\times\frac{a}{2}\times\frac{a}{2}\times\frac{a}{2}}$ $=\sqrt{3\left(\frac{a}{2}\right)^4}$ $=\frac{\sqrt{3}a^2}{4}$ Now, If Perimeter of this triangle = 180 cm \Rightarrow Side of triangle (a) $=\frac{180}{3}$ = 60 cm Using the above derived formula, Area of triangle ABC $=\frac{\sqrt{3}(60^2)}{4}$ = $15 imes 60 \sqrt{3}$ $=900\sqrt{3}$ cm² 58. Perimeter = 84 cm. Ratio of sides = 13 : 14 : 15 Sum of the ratios = 13 + 14 + 15 = 42 $\therefore \text{ One side (a)} = \frac{13}{42} \times 84 = 26 \text{ cm.}$ Second side (b) = $\frac{14}{42} \times 84 = 28 \text{ cm.}$ Third side (c) = $\frac{15}{42} \times 84 = 30 \text{ cm}$ \therefore s = $\frac{a+b+c}{2}$ $=\frac{26+28+30}{2}=\frac{84}{2}=42$ cm : Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{42(42-26)(42-28)(42-30)}$ $= \sqrt{42(16)(14)(12)}$ $=\sqrt{42(16)(14)(4\times 3)}$ $= (42)(4)(2) = 336 \text{ cm}^2$ 59. The sides of the triangle field are in the ratio 25:17:12. Let the sides of triangle be 25x, 17x and 12x. Perimeter of this triangle = 540 m 25x + 17x + 12x = 540 m 54x = 540 mx = 10 m Sides of triangle will be 250 m, 170 m, and 120 m Semi-perimeter (s) = $\frac{Perimeter}{2} = \frac{540}{2} = 270 \text{ m}$ By Heron's formula: Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{270(270-120)(270-170)(270-250)}$ $=\sqrt{270 imes 150 imes 100 imes 20}$ $= 9000 \text{ m}^2$ So, area of the triangle is 9000 m². 60. In right triangle PSQ,

 $PQ^2 = PS^2 + QS^2$... [By Pythagoras theorem]

=
$$(12)^2 + (16)^2$$

= $144 + 256 = 400$
⇒ PQ = $\sqrt{400} = 20$ cm
Now, for ΔPQR
a = 20 cm, b = 48 cm, c = 52 cm
∴ s = $\frac{a+b+c}{2}$
= $\frac{20+48+52}{2} = 60$ cm
∴ Area of ΔPQR
= $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{60(60-20)(60-48)(60-52)}$
= $\sqrt{60(40)(12)(8)}$
= $\sqrt{(6 \times 10)(4 \times 10)(6 \times 2)(8)}$
= $6 \times 10 \times 8 = 480$ cm²
Area of Δ PSQ = $\frac{1}{2} \times$ Base × Altitude
= $\frac{1}{2} \times 16 \times 12 = 96$ cm²
∴ Area of the shaded portion
= Area of ΔPQR - Area of ΔPSQ
= $480 - 96 = 384$ cm²

Section D

61. Let a, b, c be the sides of the old triangle and s be its semi-perimeter. Then, $s = \frac{1}{2}(a + b + c)$ The sides of the new triangle are 2a, 2b and 2c. Let s' be its semi-perimeter. Then

$$s' = \frac{1}{2}(2a + 2b + 2c) = a + b + c = 2s$$

$$\Rightarrow$$
 s' = 2s

Let \triangle and \triangle ' be the areas of the old and new triangles respectively. Then

 $riangle = \sqrt{s(s-a)(s-b)(s-c)}$ (1) ,

 $\Rightarrow riangle' = \sqrt{16s(s-a)(s-b)(s-c)}$ $\Rightarrow riangle' = 4\sqrt{s(s-a)(s-b)(s-c)} = 4 riangle$ [from (1)] \therefore Increase in the area of the triangle = \triangle ' - \triangle = 4 \triangle - \triangle = 3 \triangle Hence, percentage increase in area = $\left(\frac{3\triangle}{\triangle} \times 100\right)$ = 300%

62. SCHOOL AHEAD

> A traffic signal board is an equilateral triangle with side a. Perimeter of the signal board,

С

$$2s = a + a + a$$

$$\Rightarrow s = \frac{3}{2}a$$
Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{\frac{3a}{2}(\frac{3}{2}a-a)(\frac{3}{2}a-a)(\frac{3}{2}a-a)(\frac{3}{2}a-a)}$
= $\sqrt{\frac{3a}{2} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2}} = \sqrt{\frac{3a^4}{16}} = \frac{\sqrt{3}}{4}a^2$ sq. units
Now, if perimeter = 180 cm
3a = 180

 \Rightarrow a = 60 cm \therefore Area of signal board $=\frac{\sqrt{3}}{4}a^2=\frac{\sqrt{3}}{4}\times(60)^2=900\sqrt{3}\mathrm{cm}^2$ So, area of the signal board is $900\sqrt{3}$ cm². 63. Given that, the difference between the sides at right angles in a right-angled triangle is 14 cm. Let the sides containing the right angle be x cm and (x -14) cm Then, the area of the triangle = $\left[\frac{1}{2} \times x \times (x - 14)\right]$ cm² But, area = 120 cm^2 (given). $\therefore \frac{1}{2} x(x - 14) = 120$ $\Rightarrow x^2 - 14x - 240 = 0$ \Rightarrow x² - 24x + 10x - 240 \Rightarrow x(x - 24) + 10(x - 24) \Rightarrow (x - 24) (x + 10) = 0 \Rightarrow x = 24 (neglecting x = -10) \therefore one side = 24 cm, other side = (24 - 14) cm = 10 cm Hypotenuse = $\sqrt{(24)^2 + (10)^2}$ cm = $\sqrt{576 + 100}$ cm $=\sqrt{676}$ cm = 26 cm \therefore perimeter of the triangle = (24 +10 + 26) cm = 60 cm. g 4 × R x cm 64. Let, a = 7cm, b = 13cm, c = 12cm $s = \frac{a+b+c}{2} = \frac{7+13+12}{2} = \frac{32}{2} = 16$ cm · · . 7 cn 13 cm Area of $\Delta ABC = \sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{16(16-7)(16-13)(16-12)}$ $=\sqrt{16 imes9 imes3 imes4}=24\sqrt{3}{
m cm}^2$ Also, Area of $\Delta ABC = \frac{1}{2}AC \cdot BD$ $24\sqrt{3} = \frac{1}{2} \times 12 \times BD$ $\Rightarrow BD = \frac{24\sqrt{3} \times 2}{12} = 4\sqrt{3} \text{cm}$

Hence, the length of perpendicular from the opposite vertex to the given side is $4\sqrt{3}$ cm.

65. Suppose that the sides in metres are 6x, 7x and 8x.

Now, 6x + 7x + 8x = perimeter = 420

 $\Rightarrow 21x = 420$ $\Rightarrow x = \frac{420}{21}$ $\Rightarrow x = 20$ $\therefore \text{ The sides of }$

: The sides of the triangular field are $6 \times 20m$, $7 \times 20m$, $8 \times 20m$, i.e., 120 m, 140 m and 160 m. Now, s = Half the perimeter of triangular field.

$$=rac{1}{2} imes 420m=210m$$

Using Heron's formula,

Area of triangular field = $\sqrt{s(s-a)(s-b)(s-c)}$

- $=\sqrt{210(210-120)(210-140)(210-160)}$
- $=\sqrt{210 imes90 imes70 imes50}$
- $=\sqrt{66150000}=8133.265m^2$

Hence, the area of the triangular field = 8133.265 m^2 .

- 66. Let x and y be the two lines of the right \angle
 - \therefore AB = x cm, BC = y cm and AC = 10 cm

 \therefore By the given condition, Perimeter = 24 cm x + y + 10 = 24 cm Or $x + y = 14 \dots (I)$ By Pythagoras theorem, $x^2 + y^2 = (10)^2 = 100 \dots$ (II) From (1), $(x + y)^2 = (14)^2$ Or $x^2 + y^2 + 2xy = 196$:.100 + 2xy =196 [From (II)] $xy = \frac{96}{2} = 48$ sq cm (III) Area of \triangle ABC = $\frac{1}{2}xy$ sq cm $=\frac{1}{2} \times 48$ sq cm =24 sq cm.... (IV) Again, we know that $(x - y)^2 = (x + y)^2 - 4xy$ = $(14)^2 - 4 \times 48$ [From (I) & (III)] Or x - y = ± 2 (i) When, x-y = 2 and x+y = 14, then 2x = 16or x = 8, y = 6(ii) When, X - y = -2 and x + y = 14, then 2x = 12Or x = 6, y = 8Verification by using Heron's formula: Sides are 6 cm, 8 cm and 10 cm $S = \frac{24}{2} = 12 \text{ cm}$ Area of Δ ABC = $\sqrt{12}$ (12 – 6) (12 – 8) (12 – 10) sq cm $=\sqrt{12 \times 6 \times 4 \times 2}$ sq cm = 24 sq cm Which is same as found in (IV) Thus, the result is verified. 67. Let a = 18 cm, b = 24 cm and c = 30 cm \Rightarrow half perimeter = s = $\frac{a+b+c}{2} = \frac{18+24+30}{2} = 36$ cm By Heron's formula, we have: Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{36(36-18)(36-24)(36-30)}$ $=\sqrt{36 imes18 imes12 imes6}$ $=\sqrt{12 imes 3 imes 6 imes 3 imes 12 imes 6}$ =12 imes3 imes6 $= 216 \text{ cm}^2$ We know that the smallest side is 18 cm. Thus, we can find out the altitude of the triangle corresponding to 18 cm. We have: Area of triangle = 216 cm^2 $\Rightarrow \frac{1}{2} \times$ Base \times Height = 216 $\Rightarrow \frac{1}{2} \times$ (18)(Height) = 216 \Rightarrow Height = $\frac{216 \times 2}{18} = 24$ cm 68. Let: a = 42 cm, b = 34 cm and c = 20 cm $\therefore s = \frac{a+b+c}{2} = \frac{42+34+20}{2} = 48$ cm By Heron's formula, we have: Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{48(48-42)(48-34)(48-20)}$ $=\sqrt{48 imes 6 imes 14 imes 28}$

 $=\sqrt{4 imes 2 imes 6 imes 6 imes 7 imes 2 imes 7 imes 4}$ =4 imes2 imes6 imes7Area of triangle = 336 cm^2 We know that the longest side is 42 cm. Thus, we can find out the height of the triangle corresponding to 42 cm. We have: Area of triangle = 336 cm^2 $\Rightarrow \frac{1}{2} \times$ Base \times Height = 336 $\Rightarrow \frac{1}{2}$ (42)(height) = 336 \Rightarrow Height = $\frac{336 \times 2}{42}$ = 16 cm 69. 8 Let ABC be the right triangle angled at C. Perimeter = 144 cm. \Rightarrow a + b + c = 144 ... (1) \Rightarrow c = 65 . . .(2) Subtracting (2) from (1) a + b = 144 - 65 $a + b = 79 \dots (3)$ In right triangle ACB, $a^2 + b^2 = (65)^2 \dots [By Pythagoras theorem] \dots (4)$ We know that $(a + b)^2 = a^2 + b^2 + 2ab$ \Rightarrow (79)² = (65)² + 2ab. . .[Using (3) and (4)] \Rightarrow 2ab = (79)² - (65)² \Rightarrow 2ab = (79 + 65) (79 - 65) \Rightarrow 2ab = (144)(14) \Rightarrow ab = (72)(14) \Rightarrow ab = 1008 Now, $(a - b)^2 = (a + b)^2 - 4ab \dots (5)$ $= (79)^2 - 4(1008)...$ [From (3) and (5)] = 6241 - 4032 = 2209 $a - b = \sqrt{2209}$ $a - b = 47 \dots (6)$ Solving (3) and (6) a = 63, b = 16 cm. : Area of the right triangle $=\frac{1}{2}$ × base × height $=\frac{1}{2} \times 63 \times 16 = 504 \text{ cm}^2$ Using Heron's Formula a = 63, b = 16 cm, c = 65 cm. \therefore s = $\frac{a+b+c}{c}$ $=\frac{\frac{63+16+65}{2}}{2}=\frac{144}{2}=72$ cm. \therefore Area of the right triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{72(72-63)(72-16)(72-65)}$

 $=\sqrt{72(9)(56)(7)}$

 $=\sqrt{(8\times 9)(9)(8\times 7)(7)}$ $= 8 \times 9 \times 7 = 504 \text{ cm}^2$ 70. Let the height of the triangle be h meter : Base = 3h meter [given] Now, Area of triangle = $\frac{\text{Total cost}}{\text{Rate}} = \frac{783}{58} = 13.5 \text{ ha} = 135000 \text{ m}^2$ We have: Area of triangle = 135000 m^2 $\Rightarrow \frac{1}{2} \times$ Base \times Height = 135000 $\Rightarrow \frac{1}{2} \times 3h \times h = 135000$ $\Rightarrow \overset{2}{h^2} = rac{135000 imes 2}{3}$ $\Rightarrow h^2 = 90000$ \Rightarrow h = 300 m [taking square root both sides] Thus, we have Height = h = 300 mBase = 3h = 900 m. 71. Let: a = 91 m, b = 98 m, and c = 105 m $\therefore s = \frac{a+b+c}{2} = \frac{91+98+105}{2} = 147 \text{ m}$ \Rightarrow s = 147 m By Heron's formula, we have: Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{147(147-91)(147-98)(147-105)}$ $=\sqrt{147 imes56 imes49 imes42}$ $=\sqrt{7 imes 3 imes 7 imes 2 imes 2 imes 2 imes 7 imes 7 imes 7 imes 3 imes 2}$ =7 imes7 imes7 imes2 imes3 imes2 $= 1446 \text{ m}^2$ We know that the longest side is 105 m. Thus, we can find out the height of the triangle corresponding to 42 cm Area of triangle = 4116 m^2 $\Rightarrow \frac{1}{2} \times$ Base \times Height = 4116 $\Rightarrow \frac{1}{2} \times$ (105)(Height) = 4116 \Rightarrow Height = $\frac{4116 \times 2}{105} =$ 78.4 m 72. Let ABC be the right triangle right angles at C. b C 126 m $a = 126 m \dots (1)$ In right triangle ACB. $AB^2 = AC^2 + BC^2 \dots [By Pythagoras theorem]$ $\Rightarrow c^2 = a^2 + b^2$ \Rightarrow c = $\sqrt{a^2 + b^2}$...(2) \Rightarrow c – b = 42 . . .(3) $\Rightarrow \sqrt{a^2 + b^2} - b = 42 \dots [From (2)]$ $\Rightarrow \sqrt{126^2 + b^2}$ - b = 42 . . . [From (1)] $\Rightarrow \sqrt{126^2 + b^2} = (42+b)$ $\Rightarrow (126)^2 + b^2 = (42 + b)^2$ $\Rightarrow 15876 + b^2 = 1764 + b^2 + 84b$

 \Rightarrow 84b = 15876 - 1764 \Rightarrow 84 b = 14112 \Rightarrow b = $\frac{14112}{84}$ \Rightarrow b = 168 m . . . (4) From (3) and (4) c - 168 = 42 \therefore c = 168 + 42 = 210 m . . . (5) \therefore Area of the right triangle = $\frac{1}{2} \times \text{base} \times \text{height}$ $=\frac{1}{2} \times 126 \times 168$ $= 10584 \text{ m}^2$ Using Heron's Formula a = 126 m, b = 168 m, c = 210 m \therefore s = $\frac{a+b+c}{c}$ $=\frac{\frac{126+168+210}{2}}{2}=\frac{504}{2}=252 \text{ m}$: Area of the right triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{252(252-126)(252-168)(252-210)}$ $=\sqrt{252(126)(84)(42)}$ $=\sqrt{(63 imes 4)(63 imes 2)(42 imes 2)(42)}$ $= 63 \times 2 \times 2 \times 42 = 10584 \text{ m}^2$ 73. Let: a = 85 m and b = 154 m Given that perimeter = 324 m Perimeter= 2s = 324 m \Rightarrow s = $\frac{324}{2}$ m or, a + b + c = 324 \Rightarrow c = 324 - 85 - 154 = 85 m By Herons's formula, we have: Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{162(162-85)(162-154)(162-152)(162-$ 85) $=\sqrt{162 imes77 imes8 imes77}$ $=\sqrt{1296 imes77 imes77}$ $=\sqrt{36 imes 77 imes 77 imes 36}$ = 36 imes 77 $= 2772 \text{ m}^2$

74. Given that the sides of a triangle are in the ratio 5: 12: 13 and its perimeter is 150 m Let the sides of the triangle be 5x m, 12x m and 13x m. We know:

Perimeter = Sum of all sides or, 150 = 5x + 12x + 13xor, 30x = 150or, x = 5Thus, we obtain the sides of the triangle. $5 \times 5 = 25 \text{ m}$ $12 \times 5 = 60 \text{ m}$ $13 \times 5 = 65 \text{ m}$ Now, Let: a = 25 m, b = 60 m and c = 65 m $\therefore s = \frac{150}{2} = 75 \text{ m}$ $\Rightarrow s = 75 \text{ m}$ By Heron's formula, we have Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{75(75-25)(75-60)(75-65)}$ = $\sqrt{75 \times 50 \times 15 \times 10}$ = $\sqrt{15 \times 5 \times 5 \times 10 \times 15 \times 10}$ = $15 \times 5 \times 10$ = 750 m^2

75. Let a, b, c be the sides of the given triangle and s be its semi-perimeter.

Then, $s = \frac{a+b+c}{2}$...(i)

 \therefore Area of the given triangle = $\sqrt{s(s-a)(s-b)(s-c)} = \triangle$ say

As per given condition, the sides of the new triangle will be 2a, 2b, and 2c.

So, the semi-perimeter of the new triangle =

 $s' = \frac{2a+2b+2c}{2} = a + b + c ...(ii)$ From (i) and (ii), we get s' = 2s Area of new triangle = $\sqrt{s'(s'-2a)(s'-2b)(s'-2c)}$ = $\sqrt{2s(2s-2a)(2s-2b)(2s-2c)}$ = $\sqrt{16s(s-a)(s-b)(s-c)}$ = $4\sqrt{s(s-a)(s-b)(s-c)} = 4\triangle$

The required ratio = $4 \triangle : \triangle = 4:1$

Therefore the ratio of area of new triangle thus formed and the given triangle is 4 : 1.