Total No. of	Questions	:	8]	
--------------	-----------	---	----	--

SEAT No.:	
-----------	--

P4354

[Total No. of Pages: 3

[5458]-101

E.E.

ENGINEERING MATHEMATICS - II (2015 Pattern)

Time: 2 Hours]

[Max. Marks: 50

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of electronic pocket calculator is allowed.
- 4) Assume suitable data, if necessary.
- 5) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- **Q1)** a) Solve the following differential equations.

i)
$$\frac{dy}{dx} = 1 - x \tan(x - y)$$
 [4]

ii)
$$\frac{dy}{dx} = \frac{y+1}{(y+2)e^y - x}$$
 [4]

b) A particle of mass m falls under gravity in a fluid whose resistance to motion at any instant is mk times the velocity where k is constant. Find the terminal velocity of the body. [4]

OR

Q2) a) Solve
$$\frac{dy}{dx} + y \cot x = \sin 2x$$
. [4]

- b) i) A body of temperature 100°c is placed in a room whose temperature is 20°c and cools to 60°c in 5 minutes. What will be its temperature after 10 minutes? [4]
 - ii) A resistance of 250 ohms and an inductance of 640 H are connected in series with a battery of 500 volts. Find the current in the circuit if i = 0 at t = 0.

P.T.O.

Q3) a)	Find the Fourier series to represent the function $f(x) = x$	in the interval
	$-\pi < x < \pi \text{ and } f(x + 2\pi) = f(x).$	[5]

b) Evaluate
$$\int_{0}^{\infty} x^{9} e^{-2x^{2}} dx$$
. [3]

- c) Trace the curve (Any ONE) [4]
 - i) $y^2(a+x) = x^2(a-x)$
 - ii) $r = a (1 + \sin \theta)$

OR

Q4) a) Establish reduction formula for
$$I_n = \int_0^{\pi/4} \sec^n \theta \ d\theta$$
. [4]

b) Prove that
$$\int_{0}^{1} \frac{x^{a} - 1}{\log x} dx = \log(1 + a), a \ge 0$$
 [4]

- c) Find complete arclength of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$. [4]
- **Q5)** a) Show that the spheres $x^2+y^2+z^2=25$ and $x^2+y^2+z^2-18x-24y-40z+225=0$. touch externally and find their point of contact. [5]
 - b) Find the equation of right circular cone which has its vertex at (0,0,10) and whose intersection with the XOY-plane is a circle of radius 5. [4]
 - c) Find the equation of right circular cylinder of radius 3 whose axis is the line: [4]

$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$$

OR

- **Q6)** a) Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$. Also find the point of contact. [5]
 - b) Find the equation of right circular cone with vertex at origin, axis is the y-axis and semi-vertical angle of 30°. [4]
 - c) Find the equation of right circular cylinder of radius 2 whose axis passes through (1, 2, 3) and has direction ratios 2, 1, 2. [4]

Q7) Attempt any two of the following:

a) Evaluate,
$$\int_{0}^{a/\sqrt{2}} \int_{0}^{\sqrt{a^2-y^2}} \log_e(x^2+y^2) dx dy$$
 [6]

- Evaluate, $\int_{0}^{a/\sqrt{2}} \int_{0}^{\sqrt{a^2-y^2}} \log_e \left(x^2+y^2\right) dx dy$ [6]
Evaluate, $\iiint \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}}$ taken throughout the volume of the b) sphere $x^2 + y^2 + z^2 = 1$ [7]
- Find the moment of inertia about the line $\theta = \frac{\pi}{2}$ of the area enclosed by c) $r = a (1 + \cos \theta).$ [6]

OR

Q8) Attempt any two of the following:

- a) Find the total area included between the two cardiodes $r = a(1 + \cos \theta)$ and $r = a (1 - \cos \theta)$.
- Find volume of the region bounded by paraboloid $x^2 + y^2 = 2z$ and the b) cylinder $x^2 + y^2 = 4$. [7]
- Existence of the state of the s Find the centroid of one loop of the Laminscate $r^2 = a^2 \cos 2\theta$. c) [6]