Total No. of Questions : 8]

PB3596

SEAT No. :

[Total No. of Pages :3

[6261]**-1**

S.E. (Civil Engineering) GEOTECHNICAL ENGINEERING (2019 Pattern) (Semester-IV) (201008)

Time : 2¹/₂ Hours] Instructions to the candidates: [Max. Marks : 70

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Figures to the right indicates full marks.
- 4) Assume suitable data, if necessary and mention it clearly.
- 5) Use of non-programmable calculator is allowed.
- *Q1*) a) Explain the process of field compaction and its control using Proctor needle. [6]
 - b) Discuss the moisture-density relation graph for standard and modified proctor test. Also explain the significance of ZAV line in the graph. [5]
 - c) Write the equations for stresses in soil for point loading by Boussinesq's and Westergaard's theory and assumptions in these theories. [6]

OR

- Q2) a) Explain the factors affecting Compaction of soil.
 - b) What is pressure bulb? Explain its significance and draw a neat sketch of pressure bulb for concentrated point load. [5]
 - c) A concentrated load of 300 KN is applied at the ground surface. Compute the vertical pressure: [6]
 - i) At a depth of 6 m below the load.
 - ii) At a distance of 5 m at the same depth.
- Q3) a) Explain the factors affecting shear strength of cohesion less soil and cohensive soil.
 - b) A soil sample fails under and axial stress of 150 kN/m² when it is laterally unconfined. The failure makes an angle of 55° with the horizontal. Calculate C and Φ . [5]
 - c) What are the different methods to measure shear strength of soil. State merits and demerits of Direct shear test. [6]

[6]

Q4) a) The following results were obtained from a triaxial test on two soil specimens, [6]

Sample No.	Confining	Deviator Stress	Pore water
	Pressure (kPa)	at Failure (kPa)	Pressure (kPa)
1	200	244	55
2	300	314	107

Determine the shear strength parameters of the soil terms of

- i) Total stressii) Effective stresses
- b) Explain in detail Vane shear test. Explain the limitations of Vane Shear test.
 [5]
- c) Explain how shear tests are conducted with different drainage conditions. [6]
- Q5) a) Explain Earth pressure at rest, active earth pressure and passive earth pressure with respect to Wall movement with sketches. [6]
 - b) Explain step by step method of Coulomb's Wedge Theory for determination of earth pressure of retaining wall.
 - c) In a cohesionless soil deposit having unit weight of 18 kN/m³ and $\Phi = 32^{\circ}$. Determine active and passive lateral pressure intensities at depth of 10m. [6]

- Q6) a) Derive the equation for lateral earth pressure in active state for dry cohesionless backfill with uniform surcharge [6]
 - b) Explain Culman's method for evaluation of earth pressure. [6]
 - c) A smooth vertical wall retains a level backfill with $\Upsilon = 18 \text{ KN/m}^3$, $\Phi = 30^\circ$ and c = 0 to a depth of 8 m. Draw the lateral pressure diagram and compute the total active pressure in dry condition and when water table rises to the GL. Assume Υ sat = 22 KN/m³ [6]

[6261]-1

OR

- Explain landslide causes and remedial-measures. [6] **Q7**) a)
 - Explain Taylor's stability number. A slope is of 10 m with stability number b) equal to 0.055. What is factor of safety? Given $\Upsilon = 20$ kN/m³, C = 25 kN/m^2 , $\Phi = 0$ [6]
 - Explain modes of failure of finite and infinite slopes. c) [6] OR
- Explain steps involved in the stability of slopes by method of slices. [6] **Q8**) a)
 - Derive the expression F.O.S for dry infinite slope in sandy soil. b) [6]
 - Write a short note on slope classification. Determine the critical height of c) excavation of vertical cut in cohesive soil If $C = 25 \text{ kN/m}^2$ and unit weight $= 17 \text{ kN/m}^3 \Phi = 0.$ [6]