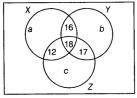
Maximum Marks : 300

SATISH INTERNATIONAL SCHOOL BHAIRAVNAGAR PUNE - 411015 8830597066

Maths nda **COMPETITIVE EXAMS - NDA**


Time Allowed: 2 hours and 30 minutes

General Instructions:

- All questions are compulsory and carry equal marks.
- This test has 120 questions. If you find more than one correct answer choose the best one. You can choose ONLY ONE response for each question.
- For every wrong attempt, 1/3 marks will be deducted.

Section A

1) Consider the following Venn diagram, where X, Y and Z are three sets. Let the number of elements in Z be denoted by n(Z) which is equal to 90.

What is the value of $n(X) + n(Y) + n(Z) - n(X \cap Y)$ $-n(Y \cap Z) - n(X \cap Z) + n(X \cap Y \cap Z)$? [2.5] b) A + b + 106 a) A + b + 43d) A + b + 63c) A + b + 96

- 2) A university awarded medals in basket ball, football and volleyball. Only x students (x < 6) got medal in all the three sports and the medals went to a total of 15x students. It awarded 5x medals in basketball, (4x + 15)medals in football and (x + 25) medals in volleyball. How many students received medals in exactly two of the three sports? [2.5]
 - a) 40 7x b) 45 - 5x c) 30 - 4x d) 35 - 7x

3) Consider the following statements

- i. The set of all irrational numbers between $\sqrt{2}$ and $\sqrt{5}$ is an infinite set.
- ii. The set of all odd integers less than 100 is a finite set.

Which of the statements given above is/ are correct? [2.5]

a)	Neither	i	nor	ii	b)	Only	ii	

d) Both i and ii c) Only i

4) A function is defined by $f(x) = \pi + \sin^2 x$. What is the range of the function? [2.5] b) $[\pi - 1, \pi + 1]$ a) [0,1] d) $[\pi - 1, \pi - 1]$ c) $[\pi, \pi + 1]$

- 5) A function is defined by $f(x) = \pi + \sin^2 x$. What is the period of the function? [2.5]
 - a) 2π b) The function is non - periodic
 - c) π
 - d) $\frac{\pi}{2}$
- 6) The period of the function $f(x) = \sin x \cos x$ is [2.5] b) 3π a) $\frac{\pi}{2}$ c) 2π d) π
- 7) Let z = [y] and y = [x]- x where [.] is the greatest integer function. If x is not an integer but positive, then what

is the value of z? [2.5] b) - 1 a) 1 c) 2 d) 0

- 8) If the sum of m terms of an AP is n and the sum of n terms is m, then the sum of (m + n) terms is [2.5] b) M + n a) Mn
- c) 2(m + n)d) - (m + n)9) The sum of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16}$ is [2.5] a) $\frac{16}{49}$ b) 49 c) $\frac{59}{16}$ d) $\frac{49}{16}$
- 10) What is the greatest value of the positive integer n satisfying the condition?

- 11) If $p = (1111 \dots p to n digits)$, then what is the value of $9p^2 + p?$ [2.5]
 - a) 10ⁿ p b) $10^n p + 1$ c) $10^n p - 1$ d) 2p10ⁿ
- 12) How many geometric progressions is/are possible containing 27, 8 and 12 as three of its/their terms? [2.5] a) Infinitely many b) Two c) One d) Four 13) What is the value of $\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{200} + \left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{200} + 1 = ?$
 - [2.5] b) 1 a) - 1 c) 2 d) 0
- 14) If the cube roots of unity are $1, \omega, \omega^2$, then the roots of equation $(x - 1)^3 + 8 = 0$ are [2.5]
 - a) 1, 2, 1 b) - 1, 1 - 2ω , 1 - $2\omega^2$ c) - 1, - 1, - 1 d) - 1, 1 + 2 ω , 1 + 2 ω^2

15) The smallest positive integer n for which $\left(\frac{1-i}{1+i}\right)^{n^2} = 1$

where $i = \sqrt{-1}$, is [2.5] a) 8 b) 4 d) 2 c) 6

- 16) Consider the following statements in respect of the roots of the equation $x^3 - 8 = 0$
 - i. The roots are non collinear.
 - ii. The roots lie on a circle of unit radius. Which of the above statements is/are correct? [2.5] a) Both i and ii b) I only
 - c) I only d) Neither i nor ii

2
 17) Letα and β(α < β) be the roots of the equation x² + bx + c = 0, where b > 0 and c < 0. Consider the following α + β + αβ > 0 α²β + β²α > 0 Which of the above statement(s) is/are correct? [2.5] Both I and II Only I Neither I nor II Only II
18) If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then p + q is equal to [2.5] a) R ² b) 2r c) R d) $\frac{2}{r}$
 19) If α and β are the roots of the equation ax² + bx + c = 0, then the equation whose roots are 1/(α+β), 1/α + 1/β is equal to [2.5] a) Ab x² + (c² + ab) x + ca = 0 b) Ab x² - (c² - ab) x - ca = 0 c) Ac x² + (a² + bc)x + bc = 0 d) Bc x² + (b² + bc)x + ab = 0
20) If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + lx + m = 0$, then which one of the following is correct? [2.5] a) $P^2m = l^2q$ b) $M^2p = q^2l$ c) $M^2p = l^2q$ d) $M^2p^2 = l^2q$
 21) The number of ways in which a cricket team of 11 players be chosen out of a batch of 15 players. So that the captain of the team is always included, is [2.5] a) 1001 b) 165 c) 364 d) 1365
 22) A polygon has 44 diagonals. The number of its sides is [2.5] a) 10 b) 7 c) 11 d) 8
23) If $C(3n, 2n) = C(3n, 2n - 7)$, then what value of $C(n, n - 5)$? [2.5] a) 21 b) 35 c) 42 d) 28
 24) The sides AB, BC, CA of a△ ABC have 3, 5 and 6 points, respectively on them. The number of triangles that can be constructed using these points as vertices is given by [2.5] a) 240 b) 333 c) 415 d) 364
25) Let $(1+x)^n = 1 + T_1x + T_2x^2 + T_3x^3 + \ldots + T_nx^n$ then what is $T_1 + T_2 + T_3 + \ldots + T_n$ equal to? [2.5] a) $2^n + 1$ b) 2^n c) $2^n - 1$ d) 2^{n-1}
26) In the expansion of $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$, the value of constant term (independent of x) is [2.5] a) 45 b) 5 c) 90 d) 8

c) 90				d)	8	
T ¹ 1 1	cc	c	4	.1		

27)	Find	the	coefficient	of	\mathbf{x}^4	in	the	expansion	of	(4	-
	3x) -	3/2.	[2.5]								
	a)	$\frac{765}{7864}$	$\frac{44}{23}$				b)	$\frac{76542}{786432}$ $\frac{76545}{76545}$			
	c)	$\frac{\frac{7654}{7864}}{\frac{7644}{7864}}$	45 23				d)	$\frac{76545}{786432}$			

28) The value of $81^{1/\log_5 3} + 27^{\log_9 36} + 3^{4/\log_7 9}$ is equal to [2.5] a) 625 b) 49 c) 890 d) 216

c) 890	a)	21	O	
$\log x + \log x^4 + \log x^9 + + \log x^n^2$	1			

29) $\frac{\log x + \log x^2 + \log x^3 + \dots + \log x^n}{\log x + \log x^2 + \log x^3 + \dots + \log x^n}$ is equal to [2.5]

a)	$\frac{3(n+2)}{2}$	b)	$\frac{2n-1}{3}$
c)	$\frac{2n+1}{3}$	d)	$\frac{3(n-1)}{2}$

	$(1) \frac{1}{3}$
30)	The system of linear equations
	5x + ky = 5,
	3x + 3y = 5;
	will be consistent if: [2.5]
	a) $K = 5$ b) $K = -5$
	c) $K \neq -3$ d) $K \neq 5$
31)	If 1, ω , ω^{-2} are the cube roots of unity, then the value
	of $\begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$ is equal to [2.5]
	of $\omega^n \omega^{2n} 1$ is equal to [2.5]
	a) - z b) 1
	a) - z b) 1 c) - 1 d) ω If $A_r = \begin{vmatrix} 1 & r & 2^r \\ 2 & n & n^2 \\ n & \frac{n(n+1)}{2} & 2^{n+1} \end{vmatrix}$ then the value of $\sum_{r=1}^n A_r$ is [2.5] a) N ² b) - 2n c) N d) 2n
	$\begin{vmatrix} 1 & r & 2^r \end{vmatrix}$
32)	If $A_r = \begin{bmatrix} 2 & n & n^2 \end{bmatrix}$ then the value
	$ n \frac{n(n+1)}{2} 2^{n+1} $
	of $\sum_{r=1}^{n} A_r$ is [2.5]
	a) N^2 b) - 2n
	c) N d) 2n
33)	Given $A = \begin{bmatrix} \sqrt{3} & 1 & -1 \\ 2 & 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & \sqrt{5} & 1 \\ -2 & 3 & \frac{1}{2} \end{bmatrix}$,
55)	$\begin{bmatrix} 2 & 3 & 0 \end{bmatrix} \text{and} \begin{bmatrix} -2 & 3 & \frac{1}{2} \end{bmatrix},$
	then find A + B. [2.5]
	a) $\begin{bmatrix} 2+\sqrt{3} & 1+\sqrt{5} & 0\\ 0 & 6 & \frac{1}{2} \end{bmatrix}$ b) $\begin{bmatrix} \sqrt{3}+\sqrt{2} & 1+\sqrt{2} & 3\\ 0 & 6 & 0 \end{bmatrix}$ c) $\begin{bmatrix} \sqrt{3}+\sqrt{2} & 1+\sqrt{3} & 4\\ 0 & 1 & \frac{1}{2} \end{bmatrix}$ d) $\begin{bmatrix} \sqrt{3}+2 & 1 & 0\\ 0 & 6 & 1 \end{bmatrix}$
	$\begin{bmatrix} 0 & 6 & \frac{1}{2} \end{bmatrix}$
	b) $\begin{bmatrix} \sqrt{3} + \sqrt{2} & 1 + \sqrt{2} & 3 \end{bmatrix}$
	c) $\sqrt{3} + \sqrt{2} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3}$
	d) $\sqrt{3+2}$ 1 0
	$\begin{vmatrix} x+y & y+z & z+x \end{vmatrix}$
34)	The value of $\begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix}$ is [2.5]
	a) 1 b) X + y + z
	c) $2(x + y + z)$ d) 0
35)	If A and B are invertible matrices, then which of the
/	following is not correct? [2.5]

- a) $(AB)^{-1} = B^{-1}A^{-1}$ b) $(A + B)^{-1} = B^{-1} + A^{-1}$ c) Det (A) $^{-1} = [det (A)]^{-1}$ d) Adj A = $|A| \cdot A^{-1}$ 36) If A = $\begin{bmatrix} 1 & 2 \\ 6 & 12 \end{bmatrix}$, then A is [2.5] a) Non - singular b) Singular c) Scalar matrix d) Diagonal matrix 37) If the area of $a\triangle$ ABD is 3 sq. units with vertices A(1, 3), B(0, 0) and D(k, 0), then k is equal to [2.5] a) 3 b) 2 c) ±2 d) ±3 38) What $is(1110011)_2 \div (10111)_2$ equal to? [2.5] a) $(111)_2$ b) $(101)_2$ c) $(1011)_2$ d) $(1001)_2$ 39) A binary number is represented by (cdccddcccddd)₂, where cd . What is its decimal equivalent? [2.5] a) 1848 b) 2842 c) 2048 d) 2872
- 40) What is the value of X, if $(1010)_2 \times (111)_2 = (X)_{10}$? [2.5]

a) 60 c) 80	b) 70 d) 75
41) What is the value of $(\sin^4 \theta -$	$-\cos^4\theta + 1$) $\csc^2\theta$? [2.5]
a) - 2 c) 2	b) 1 d) 0
42) What is the angle (in circula hand and the minute hand of half past 4? [2.5]	ar measure) between the hour of a clock when the time is
a) $\frac{\pi}{3}$ c) $\frac{\pi}{2}$	b) $\frac{\pi}{6}$ d) $\frac{\pi}{4}$
43) What is $\sin 3x + \cos 3x + x - 4 \cos^3 x$ equal to? [2. a) 0	5] b) 1
c) 4 cos 4x	d) $2 \sin 2x$ $\sin 236^\circ - \sin 56^\circ \sin 124^\circ$ 2 50 51
 44) What is the value of sin 34° co cos 28° co a) - 1 c) 1 	b) - 2 d) 2
-	$X \sin \theta + Y \cos \theta$ and $p^2 + 4pq$. What is the value of θ ?
[2.5] a) $\frac{\pi}{6}$ c) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$ d) $\frac{\pi}{3}$
46) If $p = X \cos \theta - Y \sin \theta$, $q = X$ + $q^2 = AX^2 + BY^2$, $0 \le \theta \le \frac{\pi}{2}$	$X \sin \theta + Y \cos \theta$ and $p^2 + 4pq$. What is the value of A?
[2.5] a) 3 c) 1	b) 2 d) 4
47) What is the value of $\cos^{-1}(e^{-1})$	$\cos \frac{7\pi}{6}$) ? [2.5]
a) $-\frac{\pi}{6}$ c) $\frac{\pi}{6}$	b) $\frac{5\pi}{6}$ d) $\frac{7\pi}{6}$
48) Consider the following state i. The value of $\tan^{-1}\left(\frac{1}{4}\right)$	
$\sin^{-1}\left(\frac{1}{\sqrt{5}}\right)$:: $\sin^{-1}\left(\frac{8}{8}\right) + \sin^{-1}\left(\frac{3}{8}\right)$.:−1 (77)
ii. $\sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) =$ Which of the above stateme	nt(s) is/are correct? [2.5]
a) Only IIc) Only I	b) Both I and IId) Neither I nor II
49) What is the value of $\sin^{-1}\frac{4}{5}$ a) $\frac{\pi}{4}$	+ sec ⁻¹ $\frac{5}{4} - \frac{\pi}{2}$? [2.5] b) $\frac{\pi}{2}$ d) 0
c) π	
50) Consider the following states i. $\tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right) = \tau$ ii. Their exist, $x, y \in [-1, \tau]$	then $x \neq y$ such that $x \neq y$ such that
$\sin^{-1} x + \cos^{-1} y = \frac{\pi}{2}$ Which of the above stateme	
a) Both I and IIc) Only II	b) Only Id) Neither I nor II
	of a flag, where a 20 ft elow the flag. The angle of flag at the foot of the ladder

is 60°? [2.5]		
a) 30 ft	b) $20\sqrt{2}$ f	t
c) 40 ft	d) 20 ft	

52) From the top of a lighthouse, 100 m high, the angle of depression of a boat $istan^{-1}\left(\frac{5}{12}\right)$. What is the distance between the boat and the lighthouse? [2.5]

a)	180 m	b)	360 m
c)	240 m	d)	120 m

- 3
- 53) Consider the following statements i. If in $a \triangle ABC$, A = 2B and b = c, then it must be an obtuse angled triangle. ii. There exists no $\triangle ABC$ with $\angle A = 40^{\circ}, \angle B = 65^{\circ}$ and $\frac{a}{c} = \sin 40^\circ \operatorname{cosec} 15^\circ$. Which of the above statements is/are correct? [2.5] a) Only I b) Only II c) Neither I nor II d) Both I and II 54) In $a \triangle ABC$, if the angles A, B and C are in AP, then which one of the following is correct? [2.5] b) $C^2 = a^2 + b^2 - d$ d) $A^2 = b^2 + c^2 - d$ a) $B^2 = a^2 + c^2 - ac$ ab c) C = a + bbc
- 55) Two straight roads intersect at an angle of 60°. A bus on one road is 2 km away from the intersection and a car on the other road is 3 km away from the intersection. Then, the direct distance between the two vehicles is [2.5] a) √7 km b) 1 km c) √2 km d) 4 km
- 56) If the angles of a triangle are 30° and 45° and the included side is $(\sqrt{3}+1)$ cm, then what is the area of the triangle? [2.5]
 - a) $\frac{\sqrt{3}+1}{3}$ cm² b) $\frac{\sqrt{3}+1}{2}$ cm² c) $2(\sqrt{3}+1)$ cm² d) $\frac{\sqrt{3}-1}{2}$ cm²
- 57) The base AB of an equilateral triangle ABC with side 8 cm lies along the Y axis such that the mid point of AB is at the origin and B lies above the origin. What is the equation of line passing through(8,0) and parallel to the side AC? [2.5]

a)
$$\sqrt{3}x - y - 8\sqrt{3} = 0$$

b) $\sqrt{3}x + y - 8\sqrt{3} = 0$
c) $x + \sqrt{3}y - 8 = 0$
d) $x - \sqrt{3}y - 8 = 0$

- 58) If P(3, 4) is the mid point of a line segment between the axes, then what is the equation of the line? [2.5] a) 4x + 3y - 24 = 0 b) 3x - 4y + 7 = 0c) 4x - 3y = 0 d) 3x + 4y - 25 = 0
- 59) The angle between the lines x + y 3 = 0 and x y + 3 = 0is α and the acute angle between the lines $x - \sqrt{3}y + 2\sqrt{3} = 0$ and $\sqrt{3}x - y + 1 = 0$ is β . Which one of the following is correct? [2.5] a) $\alpha\beta$ b) $\alpha = \beta$ c) $\alpha = 2\beta$ d) $\alpha\beta$
- 60) What is the angle between the straight lines $(m^2 - mn) y = (mn + n^2) x + n^3$ and $(mn + m^2) y$ $= (mn - n^2) x + m^3$, where mn? [2.5] a) 45° b) $\tan^{-1} \left(\frac{4m^2n^2}{m^2 - n^2}\right)$ c) $\tan^{-1} \left(\frac{2mn}{m^2 + n^2}\right)$ d) $\tan^{-1} \left(\frac{4m^2n^2}{m^4 - n^4}\right)$ 61) If A, B and C are in AP, then the straight line Ax + 1
- 61) If A, B and C are in AP, then the straight lineAx + 2By + C = 0 will always pass through a fixed point. The fixed point is [2.5]

a)	(0,0)	b)	(1, -1)
c)	(-1,1)	d)	(1, -2)

62) What is the diameter of a circle inscribed in a regular polygon of 12 sides, each of length 1 cm? [2.5]

4

- a) $(1 + \sqrt{2})$ cm b) $(2 + \sqrt{3})$ cm
- c) $(3 + \sqrt{3})$ cm
- d) $(2 + \sqrt{2})$ cm
- 63) The equation of the circle which touches X axis at (3, 0) and passes through (1,4) is given by [2.5]
 - a) $x^2+y^2+6x+.5y-9=0$ b) $x^2+y^2-6x-5y+9=0$ c) $x^2+y^2+6x-5y+9=0$ d) $x^2+y^2-6x+5y-9=0$
- 64) A circle is passing through the points (5, -8), (-2, 9) and (2,1).

What are the coordinates of the centre of the circle? [2.5] a) (-24, -58)b) (-2, -50)c) (-50, -20)d) (-58, -24)

65) Consider the parabola $y = x^2 + 7x + 2$ and the straight line y = 3x - 3.

What is the shortest distance from the above point on the parabola to the line? [2.5]

- a) $\frac{\sqrt{10}}{5}$ units b) $\frac{\sqrt{5}}{4}$ units c) $\frac{\sqrt{10}}{2}$ units d) $\frac{1}{\sqrt{10}}$ units

66) The equation $y^2 - 2x - 2y + 5 = 0$ represents [2.5]

- a) Parabola with focus at(1,2)
- b) Parabola with directrix at $x = \frac{3}{2}$
- c) Parabola with directrix at $x = -\frac{1}{2}$
- d) Circle centred at(1,1)
- 67) The curve $5x^2 + 12xy 22x 12y 19 = 0$ is a/an [2.5]
 - a) Pair of straight line
 - b) Parabola
 - c) Hyperbola
 - d) Ellipse
- 68) The angle between the lines with direction $\operatorname{ratios}(1,0,\pm\cos\alpha)$ is 60° . What is the value of α ? [2.5]

a) $\cos^{-1}(\frac{1}{3})$ b) $\cos^{-1}(\frac{1}{2})$ c) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ d) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$

- 69) Find the equation of the sphere having the centre (2, 2, 3) and passing through the point (3, 4, -1). [2.5]
 - a) $X^2 + y^2 + z^2 + 4x + 4y + 6z 28 = 0$ b) $X^2 + y^2 + z^2 + 4x - 4y - 6z + 28 = 0$ c) $X^2 + y^2 + z^2 + 4x + 4y + 6z + 28 = 0$ d) None of these
- 70) A straight line passes through the point(1, 1, 1) makes an angle 60° with the positive direction of Z - axis, and the cosine of the angles made by it with the positive directions of the Y - axis and the X - axis are in the ratio $\sqrt{3}:1$. What is the acute angle between the two possible positions of the line? [2.5]

a)	30°	b)	90°	
c)	60°	d)	45°	

71) The foot of the perpendicular from(0,2,3) to the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$ is [2.5]

72) The angle between the line 6x = 4y = 3z and the plane $\frac{x}{4} + \frac{y}{6} - \frac{z}{4} = \frac{1}{3}$ is [2.5]

a)
$$\tan^{-1}\left(\frac{32}{\sqrt{29}\sqrt{22}}\right)$$

b) 90°
c) 45°
d) 0°

- 73) The projection of vector \hat{i} on the vector $\hat{i} + \hat{j} + 2\hat{k}$ is: [2.5] b) $\frac{2}{\sqrt{6}}$ d) $\frac{1}{\sqrt{6}}$ a) $\sqrt{6}$
 - c) $\frac{3}{\sqrt{6}}$
- 74) What is a vector of unit length orthogonal to both the vectorsi + j + k and 2i + 3j - k? [2.5]

a)
$$\frac{-4\hat{\mathbf{i}}+3\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{26}}$$

b)
$$\frac{-4\hat{\mathbf{i}}+3\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{26}}$$

c)
$$\frac{-3\hat{\mathbf{i}}+2\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{14}}$$

d)
$$\frac{-3\hat{\mathbf{i}}+2\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{14}}$$

- 75) If O and O' are circumcentre and orthocentre of \triangle ABC, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ equals. [2.5]
 - a) $2\overline{OO'}$ b) *OO*' c) *OO*'
 - d) 20'Ó
- 76) Given that the vector α and β are non collinear. The values of x and y for which $\vec{u} - \vec{v} = \vec{w}$ holds true, if $\vec{u}=2x\alpha+y\beta$, $\vec{v}=2y\alpha+3x\beta$ and $\vec{w}=2\alpha-5\beta$, are [2.5] a) X = 2, y = 1b) X = -2, y = 1d) X = -2, y = -1c) X = 1, y = 2
- 77) If the vectors $\hat{i} 2x\hat{j} + 3y\hat{k}$ and $\hat{i} + 2x\hat{j} 3y\hat{k}$ are perpendicular to each other, then the locus of (x, y) is [2.5] a) An ellipse b) A circle c) A parabola d) A hyperbola
- 78) In a hexagon ABCDEF $A\vec{B} = a, B\vec{C} = \vec{b}$ and $\vec{CD} = \vec{c}$. Then $\overrightarrow{AE} = [2.5]$
 - a) $\vec{a} + 2\vec{b} + 2\vec{c}$
 - b) $2\vec{a} + \vec{b} + \vec{c}$
 - c) $\vec{a} + \vec{b} + \vec{c}$ d) $\vec{b} + \vec{c}$
- 79) Which one of the following is the unit vector perpendicular to both $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$? [2.5]
 - a) $\frac{\hat{j}+\hat{k}}{\sqrt{2}}$ b) \hat{k} c) $\pm \frac{\hat{i}+\hat{j}}{\sqrt{2}}$ d) $\frac{i-j}{\sqrt{2}}$

80) If θ is the angle between the vectors $2\hat{i} - 2\hat{j} + 4\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$, then $\sin \theta = [2.5]$ a) $\frac{\sqrt{2}}{7}$ b) $\frac{2}{3}$ $\sqrt{\frac{2}{7}}$ $\frac{2}{\sqrt{7}}$ d) c)

- 81) For the function f(x) = |x| -3l, which one of the following is not correct? [2.5]
 - a) The function is differentiable at x = -3
 - b) The function is not continuous at x = -3
 - c) The function is differentiable at x = 0
 - d) The function is continuous at x = 3

82) Let $f(x) = \frac{-2, -3 \le x \le 0}{x - 2, 0 < x \le 3}$ and g(x) = f(|x|) + |f(x)|. What is the value of the differential coefficient of g(x)at x = - 2? [2.5] a) 2 b) 1 c) - 1 d) 0 83) Let $f(x) = (|x| - |x - 1|)^2$ What is f'(x) equal to, when x > 1? [2.5] a) 4x - 2 b) 0 c) 8x - 4 d) 2x - 1 84) If $f(x) = \frac{\sin 2x}{\sin 3x}$, when $x \neq 0$, then at x = 0, funcwhen x = 0tion is [2.5] a) Not continuous, since $\lim_{x\to 0} f(x)$ is not defined b) Continuous c) None of these d) Not continuous, since $\lim_{x\to 0} f(x) \neq f(0)$ 85) If $y = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})$, then what is $\frac{dy}{dx}$ at x = 0 equal to? [2.5] a) 0 b) 4 c) 2 d) 1 86) If $u = e^{ax} \sin bx$ and $v = e^{ax} \cos bx$, then what is $u\frac{du}{dx} + v\frac{dv}{dx}$ equal to? [2.5] a) $(a+b)e^{ax}$ b) $ab e^{2ax}$ c) ae^{2ax} d) $(a^2 + b^2) e^{ax}$ 87) If $x = \cos(2t)$ and $y = \sin^2 t$, then what is $\frac{d^2y}{dx^2}$ equal to? [2.5] a) $-\frac{1}{2}$ c) $\sin(2t)$ b) $-\cos(2t)$ d) 0 88) What is $\frac{d\sqrt{1-\sin 2x}}{dx}$ equal to, where $\frac{\pi}{4}x\frac{\pi}{2}$? [2.5] a) $-(\cos x + \sin x)$ b) $\pm(\cos x + \sin x)$ c) None of these d) $\cos x + \sin x$ 89) If $y = \tan^{-1} \frac{x}{1 + \sqrt{(1 - x^2)}} + \sin^{-1} 2 \tan^{-1} \sqrt{\left(\frac{1 - x}{1 + x}\right)}$, then $\frac{dy}{dx}$ is equal to [2.5] a) $\frac{1-2x}{2\sqrt{(1-x^2)}}$ b) $\frac{1-2x}{\sqrt{(1-x^2)}}$ c) $\frac{1}{(1+x^2)}$ d) $\frac{x}{\sqrt{(1-x^2)}}$ 90) Consider the following statements in respect of the function $f(x) = x^2 + 1$ in the interval (1, 2). i. The maximum value of the function is 5. ii. The minimum value of the function is 2. Which of the above statements is/are correct? [2.5] a) Neither 1 nor 2 b) Both 1 and 2 c) 2 only d) 1 only 91) The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference? [2.5]

> a) 4.4 cm/s b) 8.4 cm/s c) 8.8 cm/sd) 15.4 cm/s

92) If the derivative of the function $f(x) = \frac{m}{x} + 2nx + 1$ vanishes at x = 2, then what is the value of m + 8n? [2.5]

a) Cannot be determined due to insufficient data b) 0 c) - 2

- 93) Evaluate the integral $\int \frac{dx}{x \cos^2(1+\log x)}$ [2.5] a) Tan $(1 + \log x) + C$ b) Tan $(1 - \log x) + C$ c) $\log |1 - \tan x| + C$ d) $\log |1 + \tan x| + C$
- 94) What is $\int \tan^{-1}(\sec x + \tan x) dx$ equal to? Where, C is the constant of integration. [2.5]

a)
$$\frac{\pi x}{4} + \frac{\pi x^2}{4} + C$$

b) $\frac{\pi x}{4} - \frac{x^2}{4} + C$
c) $\frac{\pi x}{2} + \frac{x^2}{4} + C$
d) $\frac{\pi x}{4} + \frac{x^2}{4} + C$

95) What is $\int \frac{dx}{2x^2 - 2x + 1}$ equal to? [2.5]

a)
$$\frac{\tan^{-1}(2x+1)}{2} + C$$

b) $\tan^{-1}(2x-1) + C$
c) $\frac{\tan^{-1}(2x-1)}{2} + C$
d) $2\tan^{-1}(2x-1) + C$

- 96) What is $\int_{1}^{3} |1 x^4| dx$ equal to? [2.5] a) $-\frac{116}{5}$ b) $-\frac{2}{5}$ c) $\frac{232}{5}$ d) $\frac{116}{116}$ b) $-\frac{232}{5}$
- 97) The value of $\int_{-\pi/2}^{\pi/2} \frac{dx}{e^{\sin x} + 1}$ is equal to [2.5] a) 1 b) 0 a) b)

c)
$$\frac{\pi}{2}$$
 d) $-\frac{\pi}{2}$
98) $\int_{0}^{a} \frac{dx}{x + \sqrt{(a^{2} - x^{2})}}$ is equal to [2.5]

a)
$$\frac{\pi}{2}$$

c) π
b) $\frac{\pi}{3}$
d) $\frac{\pi}{4}$

- 99) What is the area of one of the loops between the curve $y = c \sin x$ and X - axis? [2.5] a) 2c sq units b) 3c sq units c) 4c sq units d) C sq unit
- 100) What is the area bounded by y = [x], where [.] is the greatest integer function, the X - axis and the lines x =- 1.5 and x = -1.8? [2.5] a) 0.4 sq unit b) 0.8 sq unit d) 0.3 sq unit c) 0.6 sq unit
- 101) Variable separation method can be used to solve First Order, First Degree Differential Equations in which y' is of the form. [2.5]

a)
$$y^2 = \cos (g(y))$$

b) $y^2 = \sin (h(x))$
c) Y' = h(x)g(y)
d) $y^3 = g(y)$

102) The integrating differential factor of the equation $(1 - x^2) \frac{dy}{dx} + xy = ax -1 < x < 1$ is: [2.5]

a)
$$\frac{1}{\sqrt{x^2-1}}$$

b) $\frac{1}{\sqrt{1-x^2}}$
c) $\frac{1}{1-x^2}$
d) $\frac{1}{x^2-1}$

- 103) The number of solutions of $\frac{dy}{dx} = \frac{y+1}{x-1}$ when y(1) = 2 is : [2.5] b) Three a) Infinite
 - c) One d) Two

6

- 104) General solution of $\frac{dy}{dx}$ + y tan x = sec x is: [2.5] a) Y tan $x = \sec x + c$ b) Y sec $x = \tan x + c$ c) Tan $x = y \tan x + c$ d) X sec $x = \tan y + c$ 105) What is the degree of the differential equation $\frac{d^3y}{dx^3}$ + $2\left(\frac{d^2y}{dx^2}\right)^2 - \frac{dy}{dx} + y = 0?$ [2.5] a) 3 b) 2 c) 1 d) 6
- 106) The integrating factor of the differential equation (1 $y^2)\frac{dx}{dy} + yx = ay$, (- 1 < y < 1) is [2.5]
 - a) $\frac{1}{y^2 1}$ b) $\frac{1}{1-y^2}$ c) $\frac{1}{\sqrt{1-y^2}}$ d)
- 107) Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is [2.5]

a)	3.87	b)	8.25
c)	2.87	d)	6.5

- 108) If the median of the data 4, 7, x 1, x 3, 16, 25, written in ascending order, is 13 then x is equal to [2.5] a) 15 b) 14 c) 13 d) 16
- 109) If x_i 's are the midpoints of the class intervals of grouped data, $f_i's$ are the corresponding frequencies and \overline{x} is the mean, then $\sum (f_i x_i - \overline{x})$ is equal to [2.5] a) 2 b) 0 c) - 1 d) 1
- 110) If the median of the data: 6, 7, x 2, x, 17, 20, written in ascending order, is 16. Then x = [2.5]a) 18 b) 16 c) 15 d) 17
- 111) The width of each of nine classes in a frequency distribution is 2.5 and the lower class boundary of the lowest class 10.6. Then the upper class boundary of the highest class is [2.5] a) 28.1 b) 30.6
 - c) 33.1 d) 35.6
- 112) The difference between the maximum and the minimum observation in the data is called _____. [2.5]
 - a) Range b) Frequency
 - c) Class interval d) Cumulative frequency

- 113) For some data $x_1, x_2, ..., x_n$ with respective frequencies $f_1, f_2, ..., f_n$, the value of $\sum_{i=1}^{n} f_i (x_i \bar{x})$ is equal to: [2.5] a) $n\bar{x}$ b) 1
 - c) $\sum f_i$ d) 0
- 114) Three squares of chess board are selected at random. The probability of getting 2 squares of one colour and other of a different colour is [2.5] a)
 - b) $\frac{16}{21}$ d) $\frac{3}{8}$ $\frac{\frac{3}{32}}{\frac{8}{21}}$ c)
- 115) A number is selected at random from the first 20 numbers, then the probability that the number is a multiple of 3 is : -[2.5] a) $\frac{3}{18}$ c) $\frac{5}{18}$ b) $\frac{3}{10}$ d) $\frac{4}{18}$
- 116) The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is [2.5]
 - a) ${}^{5}C_{1}(0.7)(0.3)^{4}$ b) $(0.7)^4(0.3)$ c) ${}^{5}C_{4}(0.7)(0.3)^{4}$ d) ${}^{5}C_{4}(0.7)^{4}(0.3)$

c)

- 117) 8 coins are tossed at a time. The probability of getting
- 8 coins are tossed at $\overline{}$ atleast 6 heads up is [2.5] a) $\frac{57}{64}$ b) $\frac{229}{256}$ d) $\frac{1}{64}$
- 118) A card is selected at random from a well shuffled deck of 52 playing cards. The probability of its being a face card is [2.5] $\frac{3}{26}$ a)
 - b) $\frac{3}{13}$ d) $\frac{4}{13}$ $\overline{26}$
- 119) An integer is chosen at random from the first 100 integers. Then, the probability that this number will not be divisible by 5 or 8 is [2.5]

a)	$\frac{9}{10}$	b)	$\frac{i}{10}$
c)	$\frac{\frac{9}{10}}{\frac{1}{10}}$	d)	$\frac{\frac{1}{10}}{\frac{3}{10}}$

- 120) One of the two events must occur. If the chance of one $is\frac{2}{3}$ of the other, then odds in favour of the other are [2.5]
 - a) 2 : 3 b) 3 : 1 c) 1 : 3 d) 3 : 2