SATISH SCIENCE ACADEMY DHANORI PUNE - 411015

Maths nda **COMPETITIVE EXAMS - NDA**

Time Allowed: 2 hours and 30 minutes

General Instructions:

- All questions are compulsory and carry equal marks.
- This test has 120 questions. If you find more than one correct answer choose the best one. You can choose ONLY ONE response for each question.
- For every wrong attempt, 1/3 marks will be deducted.

Section A

1) In a class, 3 languages are offered mainly Hindi, English and French. The total number of students learning French is 46. x denotes the number of students learning Hindi and French but not English, then answer the following using below Venn diagram.

What is the total strength of the class? [2.5] a) 100 b) 124 d) 96 c) 66

2) Two finite sets having m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. Find the values of m and n. [2.5]

a)	6 and 3	b)	6 and 5
c)	6 and 6	d)	5 and 4

3) If A = 1, 2, 3, then how many elements are there in the power set of A? [2.5]

a)	1	b)	4	
c)	2	d)	8	

- 4) The inverse of the function $y = 5^{\ln x}$ is [2.5]
 - a) $x = y^{\frac{1}{\ln 5}}, y^{0}$ b) $x = y^{\ln 5}, y_0$ c) $x = 5 \ln y, y0$ d) $x = y^{\frac{1}{\ln 5}}, y^{0}$
- 5) If R is a relation from set A = 2, 4, 5 to set B = 1, 2, 3, 4, 6, 8 defined by $xRy \Leftrightarrow x$ divides y, then the domain and the range of R are [2.5]
 - a) Domain (R) = 4 and Range (R) = 2, 4, 6, 8 b) Domain (R) = 4 and Range (R) = 2, 4, 6 c) Domain (R) = 2, 4 and Range (R) = 2, 4, 6, 8 d) Domain (R) = 2 and Range (R) = 2, 4, 6
- 6) If $f(x)y = 2x x^2$, then what is the value of $f(x+2) + y^2 = 2x x^2$ f(x - 2) when x = 0 [2.5] a) 4 b) 8 c) - 4 d) - 8
- 7) What is the minimum value of |x 1|, where $x \in R$? [2.5] a) 1 b) - 1
 - c) 0 d) 2

8) Let a, b and c be in an AP. Consider the following statements

i. $\frac{1}{ab}, \frac{1}{ca}$ and $\frac{1}{bc}$ are in an AP. ii. $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}$ and $\frac{1}{\sqrt{a}+\sqrt{b}}$ are in AP. Which of the above statement(s) is/are correct? [2.5] a) Neither I nor II b) Only II c) Only I d) Both I and II

- 9) If a, b, c are in AP or GP or HP, then $\frac{a-b}{b-c}$ is equal to [2.5]
 - a) $\frac{b}{a}$ or 1 or $\frac{b}{c}$ b) 1 or $\frac{a}{b}$ or $\frac{c}{a}$ c) $\frac{c}{a}$ or $\frac{c}{b}$ or 1 d) 1 or $\frac{a}{b}$ or $\frac{a}{c}$
- 10) The sum of $(p + q)^{th}$ and $(p q)^{th}$ terms of an AP is equal to [2.5] a) Twice the qth term b) (2p)th term
 - d) Twice the pth term c) (2q)th term
- 11) What is the fourth term of an AP of n terms whose sum is n(n + 1)? [2.5]
 - a) 20 b) 12 c) 6 d) 8
- 12) What is the sum of the series 0.3 + 0.33 + 0.333 + ...n terms? [2.5]

a)
$$\frac{1}{3} \left[n - \frac{1}{3} \left(1 - \frac{1}{10^n} \right) \right]$$

b) $\frac{1}{3} \left[n - \frac{1}{9} \left(1 + \frac{1}{10^n} \right) \right]$
c) $\frac{1}{3} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$
d) $\frac{1}{3} \left[n - \frac{2}{9} \left(1 - \frac{1}{10^n} \right) \right]$

c) 0

13) If $z = 1 + i\sqrt{3}$, then larg (z) + larg (\bar{z}) | is equal to [2.5] π $\frac{\pi}{2}$ a)

d)
$$\frac{27}{3}$$

- 14) The of the complex numberz modulus $\frac{(1-i\sqrt{3})(\cos\theta+i\sin\theta)}{(1-i\sqrt{3})(\cos\theta+i\sin\theta)}$ is [2.5] $2(1-i)(\cos\theta - i\sin\theta)$ a) $\frac{1}{\sqrt{2}}$ c) $\frac{1}{\sqrt{4}}$
 - b) $\frac{1}{\sqrt{3}}$ d) $\frac{1}{2\sqrt{2}}$
- 15) The value of $i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3}$, where i = 1 $\sqrt{-1}$, is [2.5] a) - i b) I
 - c) 0 d) 1
- 16) Let z_1 , z_2 and z_3 be non zero complex numbers satisfying $z^2 = i\bar{z}$, where $i = \sqrt{-1}$. Consider the following statements i. $Z_1z_2z_3$ is purely imaginary. ii. $Z_1z_2 + z_2z_3 + z_3z_1$ is purely real.

Maximum Marks : 300

Which of the above statement(s) is/are correct? [2.5] a) Only II b) Neither I nor II c) Both I and II d) Only I

- 17) If x^2 ax + b = 0 and x^2 px + q = 0 have a root in common and the second equation has equal roots, then [2.5]
 - a) B + q = $\frac{ap}{4}$ c) B + q = 2ap b) B + q = ap d) B + q = $\frac{ap}{2}$
- 18) Consider the following statements in respect of the quadratic equation $4(x - p)(x - q) - r^2 = 0$, where p, q and r are real numbers.
 - i. The roots are real.
 - ii. The roots are equal, if p = q and r = 0.

Whie	ch of	the	above	statements	is/a	are	corre	ct?	[2.5]
a)	Only	Π			b)	Bo	th I	and	Π
c)	Only	Ι			d)	Ne	ither	Ιn	or I

- 19) The set of real values of x satisfying the inequality $|x^2|$ + x - 6 < 6 is [2.5]
 - b) $(-4, -3) \cup (2, 3)$ d) (-3, 2)a) $(-4, -1) \cup (0, 3)$ c) (-4,3)
- 20) If one of the roots of the equation $a(b c) x^2 + b(c)$ - a) x + c(a - b) = 0 is 1, then what is the second root? [2.5]
 - a) $-\frac{b(c-a)}{c'}$ b) $\frac{b(c-a)}{a(b-c)}$ c) $-\frac{c(a-b)}{c}$ c) $-\frac{1}{a(b-c)}$ d) $\frac{c(a-b)}{a(b-c)}$
- 21) What is the sum of all three digit numbers that can be formed using all the digits 3, 4 and 5, when repetition of digits is not allowed? [2.5] a) 3382 b) 4444

<i>a)</i>	5562	0)	
c)	4044	d)	2664

22) What is the number of triangles that can be formed by choosing the vertices from a set of 12 points in a plane, seven of which lie on the same straight line? [2.5] a) 185 b) 115

<i>u</i>)	105	0)	110
c)	175	d)	105

23) What is the number of 6 - digit numbers that can be formed only by using 0, 1, 2, 3, 4 and 5 (each one), and divisible by 6? [2.5] 1) 210

a)	96	b)	312
c)	192	d)	120

24) There are 20 persons among whom two are brothers. Find the number of ways in which we can arrange them around a circle, so that there is exactly one person between the two brothers. [2.5] 7!

a)	18!	b)	$18 \times 1'$
c)	$2 \times 18!$	d)	17!

25) In the expansion of $\left(x + \frac{1}{x}\right)^{2n}$, what is the (n + 1)th term from the end (when arranged in descending powers of x)? [2.5]

a)	C(2n, n)x		b)	C(2n, n)	
c)	C(2n, n -	1)x	d)	C(2n, n -	1)

26) Consider the binomial expansion of $(p+qx)^9$. What is the ratio of the coefficients of middle terms in the expansion (when expanded in ascending powers of x? [2.5]

a)	$\frac{p}{q}$	b)	Pq
c)	$\frac{4p}{5q}$	d)	$\frac{1}{(pq)}$

- 27) If $(1 + x 2x^2)^6 = 1 + a_1x + a_2x^2 + \ldots + a_{12}x^{12}$, then consider the following statements. i. $a_2 + a_4 + a_6 + \ldots + a_{12} = 31$ $endmatha_1 + a_3 + a_5 + \ldots + a_{11} = -31$ Which of the above statement(s) is/are correct? [2.5] a) Only II b) Neither I nor II c) Only I d) Both I and II
- 28) The domain of the function f defined by $f(x) = \log_x 10$ is [2.5]
- a) X > 0 excluding x = 10b) X≥ 10 c) X > 0 excluding x = 1d) X > 10 29) What is $\frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \frac{1}{\log_4 N} + \dots + \frac{1}{\log_{100} N}$ equal to $(N \neq 1)$? [2.5] a) $\frac{99}{\log_{100!} N}$ b) $\frac{99}{\log_{99!} N}$ c) $\frac{1}{\log_{99!} N}$ d) $\frac{1}{\log_{100!} N}$ 30) If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x is equal to [2.5] a) 0 b) 6

c) ± 6

1

31) Let the points A (1, 3) and B (0, 0) D(k, 0) form a triangle, using determinants find the value of k such that area of \triangle ABD is 3 sq. units. [2.5] a) ± 2 b) c) 4 d) 2

d) - 6

- 32) If A = $\begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and AB $= l_3$, then x + y equals [2.5] b) 0 a) - 1 c) 1 d) 2
- 33) If B is non singular matrix and A is a square matrix, then det $(B^{-1}AB)$ is equal to [2.5] a) Det (A) b) Det (B) c) $Det(A^{-1})$ d) Det (B^{-1})
- 34) The transformation due to reflection of (x, y) through the origin is described by the matrix. [2.5]

a)
$$\begin{vmatrix} -1 & 0 \\ 0 & -1 \\ b \end{vmatrix} \begin{vmatrix} 0 & -1 \\ -1 & 0 \\ 0 & -1 \\ d \end{vmatrix}$$

c) $\begin{vmatrix} 1 & 0 \\ 0 & -1 \\ d \end{vmatrix} \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix}$
35) If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ then $x = ?$.
[2.5]
a) 1
b) - 2
c) $\frac{1}{2}$
b) - 2
d) 2
36) If A is a 3× 3 matrix and $|A| = -2$, then value of $|A|$
(adi A)| is [2 5]

a)
$$-2$$
 b) 8
c) 2 d) -8

-2 4 2 -1 2 4 and $B = \begin{bmatrix} 6 & 2 & 0 \end{bmatrix}$ $3 \ 1 \ 0$, then B is 37) If A =-2 4 2 -2 4 8 given by [2.5] a) B = 4Ab) B = -4Ac) B = 6Ad) B = -A38) What is the binary equivalent of the decimal number 18.5625? [2.5] a) $(10010.1001)_2$ b) $(10010.10011)_2$ c) $(10011.10001)_2$ d) $(10001.10011)_2$ 39) A binary number is represented by (xxyxxyyx)₂, where x > y. What is its decimal equivalent? [2.5] a) $(426)_{10}$ b) $(430)_{10}$ c) (432)₁₀ d) (433)₁₀ 40) What is the binary number equivalent to decimal number 1011? [2.5] a) 1111110011 b) 11111001 c) 1011 d) 111011 41) In $a \triangle ABC$, if sin A - cos B = cos C, then what is B equal to? [2.5] a) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ b) π d) $\frac{\pi}{2}$ 42) If $A = \sin^2 \theta + \cos^4 \theta$, then for all real θ , which one of the following is correct? [2.5] a) $\frac{3}{4} \leq A \leq 1$ b) 1≤*A*≤2 c) $\frac{3}{4} \le A \le \frac{13}{16}$ d) $\frac{13}{16} \le A \le 1$ 43) What is $\cos 80^\circ + \cos 40^\circ - \cos 20^\circ$ equal to? [2.5] a) 1 b) - 19 c) 0 d) 2 44) Determine the value of $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$. [2.5] a) $\frac{1}{\frac{1}{16}}$ b) c) $\frac{1}{2}$ d) 45) If $p = X \cos \theta - Y \sin \theta$, $q = X \sin \theta + Y \cos \theta$ and $p^2 + 4pq$ + $q^2 = AX^2 + BY^2$, $0 \le \theta \le \frac{\pi}{2}$. What is the value of B? [2.5] a) - 1 b) 2 c) 0 d) 1 46) What will be the value of $\cos 12^\circ + \cos 84^\circ + \cos 156^\circ$ + cos 132°? [2.5] b) $\frac{-1}{2}$ d) $2(\sqrt{5})$ a) $-2\sqrt{3}$ c) $\frac{3}{4}$ 47) Let $A = \cos^{-1} x$, $B = \cos^{-1} y$ and $C = \cos^{-1} z$ If $A + B = \frac{2\pi}{3}$, then $\sin^{-1} x + \sin^{-1} y$ is equal to [2.5] b) $\frac{\pi}{6}$ d) $\frac{\pi}{3}$ a) π c) $\frac{2\pi}{3}$ 48) The value oftan $(2 \tan^{-1} \frac{1}{5} - \frac{\pi}{4})$ is [2.5] a) $\frac{5}{4}$ b) $\frac{5}{16}$ c) $-\frac{7}{17}$ d) $\frac{7}{17}$ 49) What $istan^{-1} \cot (\csc^{-1} 2)$ equal to? [2.5] a) $\frac{\pi}{4}$ b) $\frac{\pi}{6}$ c) $\frac{\hat{\pi}}{3}$ d) $\frac{\pi}{8}$ 50) Let $A = \cos^{-1} x$, $B = \cos^{-1} y$ and $C = \cos^{-1} z$ If $A+B+C=\pi$, then $x^2+y^2+z^2$ is equal to [2.5] b) 1 - 2xyza) 0 d) 2xyzc) 1

51) The shadow of a tower is found to be $x ext{ m longer}$, when

the angle of elevation of the Sun changes from 60° to 45° . If the height of the tower is $5(3 + \sqrt{3})m$, then what is x equal to? [2.5]

- a) 15 m b) 8 m c) 12 m d) 10 m
- 52) A flagstaff 20 m long standing on a pillar 10 m high subtends an angletan⁻¹(0.5) at a point P on the ground. Let θ be the angle subtended by the pillar at this point P. If x is the distance of P from bottom of the pillar, then consider the following statements
 - i. X can take two values which are in the ratio1:3. ii. X can be equal to height of the flagstaff. Which of the statements given above is/are correct? [2.5] a) Both 1 and 2 b) Neither 1 nor 2
 - c) Only 2 d) Only 1
- 53) The angles of a triangle are in the ratio 1 : 5 : 6. The ratio of its sides is [2.5]
 - a) $(\sqrt{3}-1):(\sqrt{3}+1):2\sqrt{2}$ b) $(\sqrt{3}+1):(\sqrt{3}+1):2\sqrt{2}$ c) $(\sqrt{3}-1): 2\sqrt{2}: (\sqrt{3}+1)$ d) $2\sqrt{2}:(\sqrt{3}-1):(\sqrt{3}+1)$
- 54) In $a \triangle ABC$, $(a+b+c) \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right)$ is equal to [2.5]
 - a) $2c \cot \frac{A}{2}$ b) $2 \cot \frac{C}{2}$ c) $2a \cot \frac{A}{2}$ d) $2b \cot \frac{\overline{B}}{2}$
- 55) A 24 cm long wire is bent to form a triangle with one of the angles $as60^\circ$. What is the altitude of the triangle having the greatest possible area? [2.5]
 - a) $4\sqrt{3}$ cm b) $2\sqrt{3}$ cm
 - c) 3 cm
 - d) 6 cm
- 56) The area of the $\triangle ABC$, in which a = 1, b = 2 and $\angle C$ $= 60^{\circ}$, is [2.5]

 - a) $\frac{\sqrt{3}}{2}$ sq unit b) $\frac{1}{2}$ sq units
 - c) $\sqrt{3}$ sq units
 - d) 4 sq units
- 57) Consider the points A(2,4,6), B(-2,-4,-2), C(4,6,4)and D(8, 14, 12). Which of the following statements is/are correct? i. The points are the vertices of a rectangle ABCD. ii. The mid - point of AC is the same as that of BD. Select the correct answer using the code given below [2.5] a) Only 1 b) Only 2 c) Both 1 and 2 d) Neither 1 nor 2 58) What is the equation of the right bisector of the line segment joining(1,1) and (2,3) ? [2.5] a) 2x - 4y - 5 = 0 b) x - y + 1 = 0d) 2x - 4y - 11 = 0c) 2x + 4y - 11 = 0
- 59) What is the angle between the lines $x \cos \alpha + y \sin \alpha = a$ and $x \sin \beta - y \cos \beta = a$? [2.5]
 - a) $\frac{(\pi 2\beta + 2\alpha)}{2}$ b) $\beta - \bar{\alpha}$ c) $\pi + \beta - \alpha$ d) $\frac{(\pi+2\beta+2\alpha)}{2}$

- 60) The intercepts of a straight line upon the coordinate axesare a and b. If the length of the perpendicular on this line from the origin be 1 unit, then which one of the following relations is correct? [2.5]
 - a) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{\sqrt{2}}$ b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{2}$ c) $\frac{1}{a^2} + \frac{1}{b^2} = 1$ d) $\frac{1}{a^2} + \frac{1}{b^2} = 2$
- 61) The line x + y = 4 cuts the line joining P(-1,1) and Q(5,7) at R. What is PR : RQ equal to? [2.5] a) 2:1 b) 1:1
 - c) 1:3 d) 1:2
- 62) The centre of the circle passing through origin and making positive intercepts 4 and 6 on the coordinate axes, lies on the line. **[2.5]**
 - a) 3x 2y 1 = 0b) 2x + 3y - 26 = 0c) 3x - 4y + 6 = 0d) 2x - y + 1 = 0
- 63) Consider the following statements.
 - i. Number of circles touching the given three non concurrent lines is 4.
 - ii. Number of circles passing through (1, 2), (4, 8) and (0, 0) is one.
 - Which of the above statement(s) is/are correct? [2.5]
 - a) Both I and II b) Only II
 - c) Only I d) None of these
- 64) Locus of the centre of the circle which always passes through the fixed points(a, 0) and (-a, 0) is [2.5]
 a) x = 1
 b) x = 0
 - a) x = 1b) x = 0c) x + y = 6d) x + y = 2a
- 65) If the ellipse $25x^2 + 4y^2 = 100$ intercepts the line 5x + 2y = 10, then length of the chord is [2.5] a) $\sqrt{25}$ units b) $\sqrt{23}$ units
 - c) $\sqrt{29}$ units d) $\sqrt{21}$ units
- 66) The curve represented by $x = 3(\cos t + \sin t)$ and $y = 4(\cos t \sin t)$ is [2.5]
 - a) A parabola b) A circle
 - c) A hyperbola d) An ellipse
- 67) What is the equation of the hyperbola having latusrectum and eccentricity 8 and $\frac{3}{\sqrt{5}}$ respectively? [2.5]
 - a) $\frac{x^2}{30} \frac{y^2}{25} = 1$ b) $\frac{x^2}{25} - \frac{y^2}{20} = 1$ c) $\frac{x^2}{40} - \frac{y^2}{20} = 1$ d) $\frac{x^2}{40} - \frac{y^2}{30} = 1$

68) Consider the following statements

- i. The angle between the planes2x y + z = 1 and x + y + 2z = 3 is $\frac{\pi}{3}$
- ii. The distance between the planes6x 3y + 6z + 2 = 0and 2x - y + 2z + 4 = 0 is $\frac{10}{9}$ Which of the above statement is/are correct? [2.5]
- a) Both I and II b) I only
- c) Neither I nor II d) II only
- 69) What is the equation of the plane passing through the points (-2, 6, -6), (-3, 10, -9) and (-5, 0, -6)? [2.5] a) 2x - y - 2z = 2b) x + y + z = 6c) x - y - z = 3d) 2x + y + 3z = 3
- 70) Equation of the plane that passes through the point (2, -3, 1) and is perpendicular to the line joining the points (3, 4, -1) and (2, -1, 5) is given by [2.5]

a)	x + 5y - 6z = -23	b)	x + 5y - 6z + 19 = 0
c)	x + 5y - 6z = 19	d)	x - 5y + 6z - 23 = 0

- 71) Consider two lines whose direction ratios are (2, 1, 2) and (k, 3, 5). They are inclined at an angle π/4. What are the direction ratios of a line which is perpendicular to both the lines? [2.5]

 a) (1,2,10)
 b) (11,2,-10)
 c) (11,12,-10)
 d) (-1,-2,10)

 72) If the points A(x, y, -3), B(2,0,-1) and C(4,2,3) lie on
- 72) If the points A(x, y, -3), B(2, 0, -1) and C(4, 2, 3) lie on a straight line, then what are the values of x and y respectively? [2.5]
 a) 0 and 2
 b) 1 and 1
 - c) 3 and 4 d) 1 and 1
- 73) The values of x for which the angle between $\vec{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}, \vec{b} = 7\hat{i} 2\hat{j} + x\hat{k}$ is obtuse and the angle between \vec{b} and the z axis is a cute and less than $\frac{\pi}{6}$ are [2.5]
 - a) $\frac{1}{2} < x < 15$ b) $x > \frac{1}{2}$ or x < 0c) ϕ d) $0 < x < \frac{1}{2}$
- 74) If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2), respectively, then find $\angle ABC$. [$\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC}][2.5]

a)
$$\cos^{-1}\left(\frac{13}{\sqrt{102}}\right)$$

b) $\cos^{-1}\left(\frac{11}{\sqrt{102}}\right)$
c) $\cos^{-1}\left(\frac{15}{\sqrt{102}}\right)$
d) $\cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$

- 75) The value of λ for which the angle between the lines $\vec{r} = \hat{i} + \hat{j} + \hat{k} + p(2\hat{i} + \hat{j} + 2\hat{k})$ and $\vec{r} = (1 + q)\vec{i} + (1 + q)\vec{j} + (1 + q)\vec{k}$ is $\frac{\pi}{2}$ is: [2.5]
 - a) 2 c) - 4 b) 4 d) 2
- 76) ABCD is a parallelogram with AC and BD as diagonals. Then, $\overrightarrow{AC} - \overrightarrow{BD} =$ **[2.5]**
 - a) \overrightarrow{AB} b) \overrightarrow{AB} c) \overrightarrow{AB}
 - d) $2\overrightarrow{AB}$
- 77) The vector \overrightarrow{a} and \overrightarrow{b} satisfy the equation $2\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{p}$ and $\overrightarrow{a} + 2\overrightarrow{b} = \overrightarrow{q}$, where $\overrightarrow{p} = \hat{i} + \hat{j}$ and $\overrightarrow{q} = \hat{i} - \hat{j}$. If \Box is the angle between \overrightarrow{a} and \overrightarrow{b} , then $\cos\theta$ is [2.5] a) $\sin\theta = \frac{1}{\sqrt{2}}$ b) $\cos\theta = \frac{4}{5}$

b)
$$\cos \theta = \frac{3}{5}$$

c) $\cos \theta = -\frac{3}{5}$
d) $\cos \theta = -\frac{4}{5}$

- 78) If $\vec{a} = (\hat{i} + 2\hat{j} 3\hat{k})$ and $\vec{b} = (3\hat{i} \hat{j} + 2\hat{k})$ then the angle between $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$ is [2.5] a) $\frac{\pi}{2}$ b) $\frac{2\pi}{3}$
 - a) $\frac{\pi}{2}$ b) $\frac{2\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{3}$
- 79) If two vectors have their corresponding direction cosines equal then the two vectors **[2.5]**
 - a) Are at an angle of 55°
 - b) Are at an angle of 45°
 - c) Are parallel
 - d) Are perpendicular

80) If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2, |\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$, then $|\vec{a} - 2\vec{b}|$ is equal to [2.5] a) $2\sqrt{6}$ b) 24 c) $2\sqrt{2}$ d) $\sqrt{2}$ 81) If $f(x) = \frac{[x]}{|x|}, x \neq 0$, where []denotes the greatest integer function, then what is the right - hand limit of f(x) at x = 1? **[2.5]** a) - 1 b) Right - hand limit of f(x) at x = 1 does not exist c) 1 d) 0 82) Consider the following in respect of the function f(x) =10^x i. Its domain $is(-\infty,\infty)$ ii. It is a continuous function iii. It is differentiable at x = 0Which of the above statements are correct? [2.5] a) 1, 2 and 3 b) Only 1 and 3 d) Only 2 and 3 c) Only 1 and 2 83) What $\operatorname{islim}_{n\to\infty} \frac{a^n+b^n}{a^n-b^n}$, where a > b > 1, equal to? [2.5] a) - 1 b) 1 c) 0 d) Limit does not exist 84) What $\operatorname{islim}_{\theta \to 0} \frac{\sqrt{1 - \cos \theta}}{\theta}$ equal to? [2.5] a) $-\frac{1}{2\sqrt{2}}$ b) $\sqrt{2}$ c) $2\sqrt{2}$ d) $\frac{1}{\sqrt{2}}$ 85) If $y = \frac{x\sqrt{x^2-16}}{2} - 8\ln|x + \sqrt{x^2-16}|$, then what is $\frac{dy}{dx}$ equal to? [2.5] a) $x - \sqrt{x^2 - 16}$ c) $\sqrt{x^2 - 16}$ b) $x\sqrt{x^2 - 16}$ d) $4\sqrt{x^2 - 16}$ 86) If $y = x + \sqrt{(1+x^2)}^m$, then $(1+x^2)y_2 + xy_1 - m^2y$ is equal to [2.5] a) 2 b) - 1 c) 0 d) 1 87) If $y = \cos x \cdot \cos 4x \cdot \cos 8x$, then what is $\frac{1}{y} \frac{dy}{dx}$ at $x = \frac{\pi}{4}$ equal to? [2.5] a) 0 b) 3 d) - 1 c) 1 88) If $y = (x^x)^x$, then which one of the following is correct? [2.5] a) $\frac{dy}{dx} - 2xy(1 + \ln x) = 0$ b) $\frac{dy}{dx} + 2xy(1 + \ln x) = 0$ c) $\frac{dy}{dx} + xy(1 + 2\ln x) = 0$ d) $\frac{dy}{dx} - xy(1 + 2\ln x) = 0$ 89) If $y = \tan^{-1}\left(\frac{5-2\tan\sqrt{x}}{2+5\tan\sqrt{x}}\right)$, then what is $\frac{dy}{dx}$ equal to? [2.5] a) $-\frac{1}{2\sqrt{x}}$ b) 1 c) - 1 d) $\frac{1}{2\sqrt{x}}$ 90) Consider the following statements i. $f(x) = \ln x$ is an increasing function on $(0, \infty)$. ii. $f(x) = e^x - x(\ln x)$ is an increasing function on $(1,\infty)$ Which of the above statement(s) is/are correct? [2.5] a) Neither I nor II b) Only I c) Only II d) Both I and II

91) A function $f : A \rightarrow R$ is defined by the equation $f(x) = x^2 - 4x + 5$, where A = (1, 4). What is the range of the function? [2.5] a) [1,5)b) (1,5) c) [1,5]d) (2,5)92) What is the slope of the tangent to the curve $x = t^2 + t^2$ 3t - 8, $y = 2t^2 - 2t - 5$ at t = 2? [2.5] b) $\frac{6}{7}$ d) $\frac{7}{6}$ a) 1 c) 93) What is $\int \frac{dx}{\sec^2(\tan^{-1}x)}$ equal to? [2.5] a) $\sin^{-1} x + C$ b) $\cos^{-1} x + C$ c) $\sec^{-1} x + C$ d) $\tan^{-1} x + C$ 94) What is $\int \ln(x^2) dx$ equal to? [2.5] a) $\frac{2\ln(x)}{x} - 2x + C$ b) $\frac{2}{2} + C$ c) $\overline{2}x\ln(x) + C$ d) $2x\ln(x) - 2x + C$ 95) Evaluate $\int \frac{x+1}{\sqrt{9-4x^2}} dx$ [2.5] a) $-\frac{1}{4}\sqrt{9-4x^2} - \frac{1}{2}\sin^{-1}\left(\frac{2}{3}x\right) + C$ b) $\frac{1}{4}\sqrt{9-4x^2} + \frac{1}{2}\sin^{-1}(\frac{2}{3}x) + C$ c) $\frac{1}{4}\sqrt{9-4x^2} - \frac{1}{2}\sin^{-1}(\frac{2}{3}x) + C$ d) $-\frac{1}{4}\sqrt{9-4x^2} + \frac{1}{2}\sin^{-1}(\frac{2}{3}x) + C$ 96) What is $\int_0^a \frac{f(a-x)}{f(x)+f(a-x)} dx$ equal to? [2.5] b) $\frac{a}{2}$ a) c) 2*a* d) 0 97) $\lim_{n \to \infty} \frac{1^{99} + 2^{99} + 3^{99} + \dots + n^{99}}{n^{100}}$ is equal to [2.5] a) $\frac{1}{100}$ b) $\frac{9}{100}$ c) $\frac{1}{101}$ d) $\frac{1}{99}$ 98) If $\int_0^a [f(x) + f(-x)] dx = \int_0^a g(x) dx$, then what is g(x) equal to? [2.5] a) -f(x)b) f(-x) - f(x)c) f(x)d) f(-x) + f(x)99) What is the area of the region bounded by x - |y| = 0and x - 2 = 0? [2.5] a) 1 b) 2 d) 8 c) 4 100) What is the area between the curve f(x) = x|x| and x axis for $x \in [-1, 1]$? [2.5] $\frac{1}{4}$ $\frac{1}{2}$ b) $\frac{2}{3}$ d) $\frac{1}{3}$ a) c) 101) General solution of $\frac{dy}{dx} + 2y = \sin x$ is [2.5] a) $y = \frac{1}{5} (2 \sin x + \cos x) - Ce^{-2x}$ b) $y = \frac{1}{5} (2 \sin x + \cos x) + Ce^{-2x}$ c) $y = \frac{1}{5} (2 \sin x - \cos x) - Ce^{-2x}$ d) $y = \frac{1}{5} (2 \sin x - \cos x) + Ce^{-2x}$ 102) The solution of $\frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2 y^2}$ is, where, C is an arbitrary constant. [2.5] a) $2\sin^{-1} y = x\sqrt{1-x^2} + \cos^{-1} x + C$ b) $2\sin^{-1} y = \sqrt{1-x^2} + \sin^{-1} x + C$ c) $2\sin^{-1} y = x\sqrt{1-x^2} + \sin^{-1} x + C$ d) $\sin^{-1} y = \sin^{-1} x + C$ The Integrating Factor of the different equation $(1 - y^2) \frac{dx}{dy} + yx = ay$ (-1 < y < 1) is [2.5] 103) The differential

d)
$$\frac{1}{\sqrt{1-y^2}}$$

104) The solution of the $\operatorname{DE} \frac{dy}{dx} = \frac{1-\cos x}{1\cos x}$ is [2.5]
a) $Y = \tan x + x + C$
b) $y = \tan \frac{x}{2} - 2x + C$
c) $y = 2\tan \frac{x}{2} - x + C$
d) $Y = \tan x - x + C$
105) The general solution of the differential equation $(x^2 + x + 1)$ dy $+(y^2 + y + 1)$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dy $+(y^2 + y + 1)$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dy $+(y^2 + y + 1)$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $+(y + (y + y + 1))$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $+(y + (y + y + 1))$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $+(y + (y + y + 1))$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $+(y + (y + 1))$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $+(y + (y + 1))$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $+(y + (y + 1))$ dx $= 0$ is $(x + y + 1) = A(1 + 1)$ dx $= 0$ is $(x + 1) = 0$

Y).

a) $\frac{1}{12}$ c) $\frac{1}{4}$

What is P(Z > 11) equal to? [2.5]

b) 0 d) $\frac{1}{6}$

- 110) The most frequent value in the data is known as [2.5]a) Meanb) Modec) All the threed) Median
- 111) The arithmetic mean of a set of 40 values is 65. If each of the 40 values is increased by 5, what will be

6