Maximum Marks : 200

SATISH SCIENCE ACADEMY DHANORI PUNE - 411015

Mhtcet pcm 2 ENTRANCE EXAM - MHT - CET

Time Allowed: 3 hours

General Instructions:

- All questions are compulsory.
- There are two sections.
- Section A has 100 questions from Physics and Chemistry.
- Section B has 50 questions from Mathematics.

Section - A (Physics)

- 1) Two particles are projected from the same point with the same speed, at different angles θ_1 and θ_2 to the horizontal. Their times of flight are t₁ and t₂ respectively and they have the same horizontal range. Then the incorrect relation is [1]
 - a) $\frac{t_1}{\sin \theta_1} = \frac{t_2}{\sin \theta_2}$ b) $\frac{t_1}{t_2} = \tan \theta_2$ c) $\frac{t_1}{t_2} = \tan \theta_1$ d) $\theta_1 + \theta_2 = 90^{\circ}$
- 2) A mass of 10 kg is suspended from a rope wound on a wheel of diameter 40 cm. The torque about the axis of rotation is [1]
 - a) 4 N m b) 39.2 N m d) 2 N m c) 19.6 N m
- 3) A tunnel is dug along a chord of the earth at a perpendicular distance $\frac{R}{2}$ from the centre of earth. The wall of the tunnel may be assumed to be frictionless. A particle is released from one end of the tunnel. The pressing force by the particle on wall is depicted by the graph [1]

- 4) Absolute zero may be regarded as that temperature at which [1]
 - a) All gases become liquids.
 - b) Molecular motion in a gas would be the minimum possible.
 - c) All substances are solid.

d) Water freezes.

- 5) At a given temperature, the ratio of the velocity of sound in helium gas to that in nitrogen gas is [1]
 - a) $\left(\frac{5}{\sqrt{21}}\right) : 1$ b) $\sqrt{8}:1$ c) $\sqrt{7}:1$ d) $\left(\frac{\sqrt{21}}{5}\right)$: 1
- 6) For a small angled prism, angle of prism A, the angle of minimum deviation (δ) varies with the refractive index of the prism as shown in the graph

$$\begin{array}{c}
\delta^{\uparrow} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

- a) Point P corresponds to n = 1
- b) Slope of the line PQ = $\frac{A}{2}$
- c) Both point P corresponds to n = 1 and slope of line PQ = A are true
- d) Slope of line PQ = A
- 7) Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of prism of given prism. Then the angle of prism is $(\sin 48^{\circ}36' = 0.75)$ [1] a) 41°24' b) 60° c) 82°48' d) 80°
- 8) Given a point source of light, which of the following can produce a convergent beam of light? [1]
 - a) A plane mirror b) Convex mirror c) Convex lens
 - d) Concave mirror
- 9) A metallic solid sphere is placed in a uniform electric field. The lines of force follow the path(s) shown in figure as

- 10) A body of mass 1 kg tied to one end of string is revolved in a horizontal circle of radius 0.1 m with a speed of 3 revolution/s. Assuming the effect of gravity is negligible, then linear velocity, acceleration and tension in the string will be [1]
 - a) 1.88 m/s, 35.5 m/s², 35.5 N

- 2
- b) 2.88 m/s, 45.5 m/s², 45.5 N c) 3.88 m/s, 55.5 m/s², 55.5 N d) 4.88 m/s, 35.5 m/s², 35.5 N
- 11) A particle executes linear simple harmonic motion with an amplitude of 2 cm. When the particle is at 1 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is [1]
 - a) $2\pi\sqrt{3}$
 - b) $\frac{1}{2\pi\sqrt{3}}$ c) $\frac{2\pi}{\sqrt{3}}$

 - d) $\frac{\sqrt{3}}{2\pi}$
- 12) The length of seconds pendulum at a place where g =4.9 m/s² is [1]
 - b) 99.54 cm a) 60 cm
 - c) 50 cm d) 101 cm
- 13) The equation, $m \frac{d^2y}{dt^2} + b \frac{dy}{dt} + \omega^2 y = 0$ represents the equation of motion for a [1]
 - a) Resonant oscillator.
 - b) Free vibrator.
 - c) Damped harmonic oscillator.
 - d) Forced oscillator.
- 14) The power factor of a series LCR circuit at resonance, is [1]

a)	1	b)	Zero
c)	0.5	d)	1.5

- 15) S. I. unit of surface tension is [1]
 - b) Nm ^{- 1} a) Nm⁻²
 - d) Ns ^{- 1} c) Nm
- 16) When the stationary waves are formed, then i. Transfer of energy is double of the energy of com
 - ponent waves.
 - ii. Transfer of energy is zero.
 - iii. No energy is present in the medium.
 - iv. Value of energy density at each point of the path is infinite.

[1]

a) Option	(c)	b)	Option	(b))

- c) Option (a) d) Option (d)
- 17) The equation of the progressive wave is Y = 3 $\sin\left[\pi\left(\frac{t}{3}-\frac{x}{5}\right)+\frac{\pi}{4}\right]$ where x and Y are in metre and time in second. Which of the following is correct? [1]

a) Velocity V = 1.5 m/s

- b) Amplitude A = 3 cm
- c) Frequency F = 0.2 Hz
- d) Wavelength λ = 10 m
- 18) The number of beats produced per second by two tuning forks when sounded together is 4. If one of them has a frequency of 250 Hz, the frequency of other cannot be more than [1] 1 \ A46 11 a)

a)	252 Hz	b)	246 Hz
c)	254 Hz	d)	248 Hz

19) At N.T.P., the R.M.S velocity of hydrogen molecule is (P = 1.013×10^5 N/m², Density of hydrogen = 0.09 kg/m³) [1]

a)	1938 m/s	b)	1738 m/s
c)	1838 m/s	d)	1640 m/s

20) In a single slit diffraction experiment, if the first minimum for $\lambda_1 = 600$ nm coincides with the first maximum for wavelength λ_2 , then λ_2 will be equal to [1]

a)	400 nm	b)	240 nm
c)	300 nm	d)	345 nm

- 21) A galvanometer of resistance 30Ω is connected to a battery of emf 2 V with 1970 Ω resistance in series. A full scale deflection of 20 divisions is obtained in the galvanometer. To reduce the deflection to 10 divisions, the resistance in series required is [1]
 - b) 3970Ω 4030Ω a)
 - 4000Ω 2000Ω c) d)
- 22) An electric network is constructed with 1 Ω and 2 Ω resistors as shown. The current through the 2 Ω resistor nearest to the battery is

- 23) A potentiometer consists of a wire of length 4 m and resistance 10Ω . It is connected to a cell of e.m.f. 2 V. The potential difference per unit length of the wire will be [1]
 - a) 2 V/m b) 0.5 V/m c) 10 V/m 5 V/m d)
- 24) The reading of an ideal voltmeter in the circuit shown is,

- 25) A current carrying coil is equivalent to [1]
 - a) Magnetic moment.
 - b) Electric dipole.
 - c) Both electric dipole and magnetic dipole.
 - d) Magnetic dipole.
- 26) A, B and C are parallel conductors of equal length carrying currents I, I and 2I respectively. Distance between A and B is x. Distance between B and C is also x. F_1 is the force exerted by B on A and F_2 is the force exerted by C on A. Choose the correct answer.

27) If the current flowing in ABCD is I. Then the field at P as shown in the figure will be

- b) $\frac{\mu_0 I \theta}{4\pi} \left(\frac{1}{a} \frac{1}{b}\right)$ c) $\frac{\mu_0 I \theta}{4\pi} (a+b)$ d) $\frac{\mu_0 I \theta}{4\pi} \left(\frac{1}{a} + \frac{1}{b}\right)$
- The value of magnetic induction inside a solenoid along the radius [1]
 - a) Increases with distance from the axis.
 - b) Is zero.
 - c) Decreases with distance from the axis.
 - d) Is uniform.
- 29) The magnetic moment of electron due to orbital motion is proportional to (n = principal quantum numbers) [1] a) N² b) $\frac{1}{n}$ c) $\frac{1}{n^2}$ d) N
- 30) Relative permeability of nickel is 600, then its magnetic susceptibility will be [1]
 - a) 599 b) 600×10^{-7} c) 600×10^{7} d) 601
- 31) A permanent magnet can be made from which one of the following substances? [1]
 - a) Paramagnetic b) Soft iron
 - c) Ferromagnetic d) Diamagnetic
- 32) A bar magnet of magnetic moment \vec{M} is placed in a magnetic field of induction \vec{B} . The torque exerted on it is [1]
 - a) $\vec{B} \times \vec{M}$
 - b) $-\vec{M}\cdot\vec{B}$
 - c) $\vec{M} \times \vec{B}$
 - d) $\vec{M} \cdot \vec{B}$
- 33) A conducting rod of length 21 is rotating with constant angular speed ω about its perpendicular bisector. A uniform magnetic field \vec{B} exists parallel to the axis of rotation. The e.m.f. induced between two ends of the rod is

- d) $\mathbf{B}\omega \mathbf{l}^2$
- 34) A loss free transformer has 500 turns on its primary winding and 2500 in secondary. The meters of the secondary indicate 200 volts at 8 ampere under these conditions. The voltage and current in the primary is [1]
 a) 100 V, 16 A
 b) 40 V, 40 A
 c) 80 V, 20 A
 d) 160 V, 10 A
- 35) A wheel with 10 spokes each of length 'L' m is rotated with a uniform angular velocity ' ω ' in a plane normal to the magnetic field 'B'. The emf induced between the axle and the rim of the wheel. [1]
 - a) $\frac{1}{2}\omega BL^2$ b) $\frac{1}{2} N\omega BL^2$ c) $N\omega BL^2$ d) ωBL^2
- 36) The energy of an electron having de Broglie wavelength ' λ ' is (h = Planck's constant, m = mass of electron) [1]

- a) $\frac{h^2}{2 m^2 \lambda^2}$ b) $\frac{h^2}{2 m^2 \lambda}$ c) $\frac{h}{2 m \lambda}$ d) $\frac{h^2}{2 m \lambda^2}$
- 37) A radiation of 3300Å falls on a metal to eject electrons with a maximum velocity of 0.4×10^6 m/s, the value of the work function of metal is nearly
- 38) In photoelectric effect, [1]
 - a) Electrons are emitted from the metals when light rays (radiations) are reflected from it.
 - b) Light of longer wavelength is more effective than light of shorter wavelength.
 - c) Light of shorter wavelength is more effective than light of longer wavelength.
 - d) Light is not used.
- 39) An α particle moving with a constant energy is scattered by the nucleus. The scattering angle will be maximum when the α - particle [1]
 - a) Just passes the nucleus
 - b) Approaches the nucleus head on
 - c) Passes at large distance from the nucleus
 - d) Is attracted by the nucleus
- 40) In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If ao is the radius of the ground state orbit, m is the mass, e is the charge on the electron and ε_0 is the vacuum permittivity, the speed of the electron is [1]

a) 0
b)
$$\frac{\sqrt{4\pi\varepsilon_0 a_0 m}}{\frac{e}{e}}$$

c) $\frac{e}{\sqrt{4\pi\varepsilon_0 a_0 m}}$
d) $\frac{e}{\sqrt{\varepsilon_0 a_0 m}}$

- 41) Which pair is isotonic? [1]
 - a) ${}_{6}C^{14},{}_{7}N^{14}$ c) ${}_{6}C^{12},{}_{7}N^{13},{}_{6}C^{12}$ b) ${}_{7}N^{13},{}_{6}C^{12}$ d) ${}_{7}N^{13},{}_{7}N^{14}$
- 42) First orbit velocity of electron is 2.1×10^6 m/s then the velocity of 3rd orbit electron is [1]

a)	$0.7 \times 10^{\circ} \text{ m/s}$	b)	$7 \times$	10′	m/s
c)	6×10^6 m/s	d)	$7 \times$	10^{6}	m/s

- 43) If wavelength for a wave is $\lambda = 6000 \text{ Å}$, then wave number will be [1]
 - a) $166 \times 10^8 \text{m}^{-1}$ b) $16.6 \times 10^7 \text{m}^{-1}$
 - c) $1.66 \times 10^7 \text{m}^{-1}$ d) $1.66 \times 10^6 \text{m}^{-1}$
- 44) As an electron makes a transition from an excited state to the ground state of a hydrogen - like atom/ion
 - i. Its kinetic energy increases but potential energy and total energy decrease
 - ii. Kinetic energy, potential energy and total energy decrease
 - iii. Kinetic energy decreases, potential energy increases but total energy remains same
 - iv. Kinetic energy and total energy decrease but potential energy increases
 - [1] a)

c)

Option (a)

- b) Option (c)
- Option (d) d) Option (b)

4		
45)	According to Einstein's mass - energy equivalence, [1]	
	a) Mass can be created but energy cannot createdb) Energy can be createdc) Mass and energy are interconvertibled) Mass and energy are equivalent	
46)	Binding energy of a nucleus is equivalent to [1]	
	a) Mass of the protonb) Mass of the nucleusc) Mass defect of the nucleusd) Mass of the neutron	
47)	Identify the semiconductor devices whose characteristics are given below, in the order (a), (b), (c), (d): (a)	
	c) Option (c) d) Option (b)	
48)	An npn transistor circuit is arranged as shown in figure. It is v_{im}^+ n $+$ v_{vim}^+ $v_{vim}^ v_{vim}^-$	
	₩ [1]	
	 a) A common - collector amplifier circuit. b) A common - emitter amplifier circuit. c) Rectifier circuit. d) A common - base amplifier circuit. 	
49)	The output Y of the logic circuit given below is $A \circ \frown \circ \frown \circ Y$ $B \circ \frown \circ Y$ [1] a) $(\overline{A} + B) \cdot \overline{A}$ b) $\overline{A} + B$ c) \overline{A} d) $(\overline{A} + B) \cdot \overline{A}$	
50)	The correct Boolean operation represented by the circuit diagram drawn is:	

a) NAND b) NOR c) OR d) AND
Section - A (Chemistry)
51) What is the mass of 0.5 mole of ozone molecule? [1] a) 16 g b) 24 g c) 8 g d) 48 g
 52) Name the particle that was identified by J.J.Thomson in the cathode ray tube experiment. [1] a) Proton b) Electron c) Neutron d) Nucleon
53) Which of the following reactions involve both oxidation and reduction? [1]
a) $2NaOH + H_2SO_4 \longrightarrow Na_2SO^4 + 2H_2O$ b) $NaBr + HCl \longrightarrow NaCl + HBr$ c) $H_2 + Br_2 \longrightarrow 2HBr$ d) $HBr + AgNO_3 \longrightarrow AgBr + HNO_3$
54) Hydrogen combines with other elements by [1]
a) Losing, gaining or sharing of electronsb) Gaining electronsc) Losing electronsd) Sharing electrons
 55) In the case of gases, relative density is measured with respect to gas and is called vapour density [1] a) Hydrogen b) Oxygen c) Helium d) Nitrogen
 56) The process that involves the conversion of a precipitate into colloidal sol by shaking with a dispersion medium in the presence of a small amount of an electrolyte is called [1] a) Coagulation b) Purification
c) Peptization d) Disintegration
 57) Which of the following reagents will be able to distinguish between but - 1 - yne and but - 2 - yne? [1] a) Br₂ b) HCl c) O₂ d) LiNH₂
58) An alkene having molecular formula C_7H_{14} was subjected to ozonolysis in the presence of zinc dust. An equimolar amount of the following two compounds was obtained: H_{3C} $C = O$ H_{3C} $C = O$ H_{3C} $C = O$
and H_3CH_2C' The IUPAC name of the alkene is [1]
 a) 3,4 - Dimethylpent - 3 - ene b) 2,3 - Dimethylpent - 3 - ene c) 3,4 - Dimethylpent - 2 - ene d) 2,3 - Dimethylpent - 2 - ene
59) Which of the following undergoes electromeric effect? [1]a) Ethyneb) Methyl chloridec) Methyl bromided) Ethane
60) Fourteen Bravais lattices are divided into crystal systems. [1]

- 3 a) b) 4 c) 7 d) 14
- 61) To get an n type semiconductor, the impurity to be added to silicon should have which of the following number of valence electrons? [1] a) 5 b) 1
 - c) 3 d) 2

[1]

- 62) Which of the following solutions exhibits positive deviation from Raoult's law? [1]
 - a) Ethanol + Acetoneb) Chloroform + Acetonec) Benzene + Toluened) Aniline + Phenol
- 63) On dissolving 18 g solid in 100 g H₂O at 20 °C, water vapour pressure decreases from 17.53 mm to 17.22 mm. The molecular weight of the solid is _____. [1]
 - a) 18 g mol^{-1} b) 27 g mol^{-1} c) 183 g mol^{-1} d) 274 g mol^{-1}
- 64) Considering entropy (S) as a thermodynamic parameter, the criterion for the spontaneity of any process is _____.[1]
 - a) Δ S_{system} + Δ S_{surroundings} > 0
 - b) $\Delta S_{\text{System}} > 0$ only
 - c) Δ S_{system} Δ S_{surroundings} > 0
 - d) Δ S_{surroundings}> 0 only
- 65) Which is TRUE for heat and temperature?
 - i. Intensive and extensive respectively. properties
 - ii. Both are intensive properties.
 - iii. Both are extensive properties.
 - iv. Extensive and intensive respectively.
 - [1] a)
- Option (c) b) Option (d)
- c) Option (a) d) Option (b)
- 66) The resulting solution obtained at the end of electrolysis of concentrated aqueous solution of NaCl ____. [1]
 - a) Turns blue litmus into red
 - b) Turns red litmus into blue
 - c) The colour of red or blue litmus does not change
 - d) Remains colourless with phenolphthalein
- 67) Strong electrolytes are those which _____. [1]
 - a) Completely dissociate into ions in aqueous solutions
 - b) Do not dissociate into ions in aqueous solutions
 - c) Do not conduct electricity when dissolved in water
 - d) Dissociate to a smaller extent in aqueous solutions
- 68) When initial concentration of a reactant is doubled in a reaction, its half life period is not affected. The order of the reaction is _____. [1]
 - a) More than zero but less than first
 - b) First
 - c) Second
 - d) Zero

c)

- 69) For a reaction, rate law is rate = k [A][B]. If the concentration of A is doubled keeping [B]constant, then the rate of reaction would be _____. [1]
 - a) Doubled b) Quadrupled
 - Tripled d) Halved
- 70) For an aqueous neutral solution at 298 K, $[H_3O^+]$ is equal to _____ M. [1]

a)	$1 \times$	10 - 14	b)	$1 \times$	10^{14}
c)	$1 \times$	10 - 7	d)	$1 \times$	10^{7}

- 71) If the solubility product K_{sp} of a sparingly soluble salt MX_2 at 25 °C is 1.0×10^{-11} , the solubility of the salt in mole litre⁻¹ at this temperature will be _____. [1]
 - a) $\sqrt[3]{\frac{4}{1.0 \times 10^{-11}}}$ b) $\sqrt[3]{\frac{1.0 \times 10^{-11}}{4}}$ c) $\sqrt[3]{\frac{1.0 \times 10^{-11}}{2}}$

d) $\sqrt[2]{\frac{1.0 \times 10^{-11}}{4}}$

- 72) Which of the following is NOT a weak acid? [1] H_2SO_4 b) HF a) c) CH₃COOH d) H_2S 73) Which of the following is CORRECT? i. Atomic radius: O > S > Se > Te > Po Ionisation enthalpy: O > S > Se > Te > Poii. Atomic radius: O < S < Se < Te < Po Ionisation enthalpy: O < S < Se < Te < Poiii. Atomic radius: O > S > Se > Te > Po Ionisation enthalpy: O < S < Se < Te < Poiv. Atomic radius: O < S < Se < Te < Po Ionisation enthalpy: O > S > Se > Te > Po[1] b) Option (c) Option (d) a) Option (a) d) Option (b) c) 74) Identify the products formed in the following reaction. $HCl + O_2 \xrightarrow{CuCl_2}{\Delta}?$ [1] a) $H_2O_2 + Cl_2$ b) HClO + H_2 c) $Cl_2 + H_2O$ d) $H_2 + ClO_2$ 75) Which of the following compounds exhibit distorted octahedral geometry? [1] a) XeF4 b) XeO₃
 - c) XeOF₄ d) XeF₆
- 76) Which of the following statement is INCORRECT?
 - i. Blast furnace is tall cylindrical steel tower which is lined with refractory bricks.
 - ii. Blast furnace works on counter current principle where the charge comes down and hot gases move up the tower.
 - iii. The temperature goes on decreasing from top to bottom in the blast furnace.
 - iv. The maximum temperature in the blast furnace is about 2000 K above the tuyers.
 - [1]
 - a) Option (b) b) Option (a)
 - c) Option (d) d) Option (c)
- 77) Which of the following has one electron in 5d orbital in it ground state? [1]
 - a) Thulium b) Gadolinium
 - c) Neodymium d) Terbium
- 78) In coordination compounds, the hydrate isomers differ in
 - i. The number of water molecules of hydration
 - ii. The number of water molecules only present as ligands
 - iii. Their coordination number of the metal atom
 - iv. Both the number of water molecules of hydration and the number of water molecules only present as ligands
 - [1]
 - a) Option (b) b) Option (c)
 - c) Option (d) d) Option (a)
- 79) The stability of complex formed by metal ions of the same charge with the same ligand, ____. [1]
 - a) Increases with decrease in atomic radii of metal ion
 - b) Depends on the atomic mass of metal ion
 - c) Independent of atomic radii of metal ion
 - d) Increases with increase in atomic radii of metal ion

80) How many out of $[TiF_6]^2$, $[CoF_6]^3$, Cu_2Cl_2 and

 $[NiCl_4]^2$ are colorless? (Ti = 22, Co = 27, Cu = 29, Ni = 28 [1] a) 3 b) 1 c) 2 d) 0

81) Which of the following is an aryl halide? [1]

82) R - Mg - Br + H₂O \longrightarrow RH_(gas). Gas occupies 1.4 L g^{-1} of RH at S.T.P. Hence, R - Mg - Br is ____ __. [1] b) CH₃CH₂MgBr a) C₆H₅MgBr

- 83) Consider the reaction: $R \ \text{-} \ CH_2 \ \text{-} \ OH \ + \ HCl \ \longrightarrow \ R \ \text{-} \ CH_2 \ \text{-} \ Cl \ + \ H_2O.$ $\begin{array}{cccc} \mbox{For the completion of the reaction,} & \underline{ } & \mbox{is used.} & \mbox{[1]} \\ \mbox{a)} & \mbox{Excess of water} & \mbox{b)} & \mbox{Conc.} & \mbox{H}_2 SO_4 \end{array}$ c) $CaCl_2$ d) Anhydrous ZnCl₂
- 84) Anisole is obtained from phenol by reaction with _____ [1]
 - a) NaOH + C_2H_5I b) NaOH + CO_2 c) NaOH + CH_3I d) NaOH + CHCl₃ CH₃ сн – он
- 85) is an example for _ _. [1] a) Allylic alcohol b) Benzylic alcohol c) Glycol d) Vinylic alcohol
- 86) C_6H_5 CH = CHCHO \xrightarrow{x} C_6H_5CH = CHCH₂OH In the above sequence, X can be ____. [1] a) H_2/Pd b) LiAlH₄ c) $K_2Cr_2O_7/H^+$ d) H_2/Ni
- 87) The reagent used to prepare benzaldehyde by Stephen reaction is ____. [1]
 - a) SnCl₂/dil. HCl b) CO + HCl/AlCl₃ c) H_2 , Pd/BaSO₄ d) CrO_2Cl_2/CS_2
- 88) M Nitrobenzaldehyde, on reaction with aqueous concentrated NaOH solution at room temperature, gives
 - i. Sodium m nitrobenzoate and m nitrobenzyl alcohol
 - ii. M hydroxybenzaldehyde and m nitrobenzyl alcohol
 - iii. M nitrobenzyl alcohol and m hydroxybenzyl alcohol
 - iv. Sodium m nitrobenzoate and m hydroxybenzyl alcohol

[1]			
a)	Option (b)	b)	Option (d)
c)	Option (a)	d)	Option (c)

- 89) Which class of compounds shows H bonding even more than in alcohols? [1]
 - b) Carboxylic acids
 - a) Ethers c) Phenols
- d) Aldehydes

- 90) IUPAC name of n propylamine is ____. [1] a) Propan - 2 - amine b) Butan - 1 - amine c) Propan - 1 - amine d) Butan - 2 - amine 91) The IUPAC name for $(CH_3)_2NC(CH_3)_3$ is ____. [1] a) N,N - dimethylbutan - 2 - amine b) N,N - dimethyl - 2 - methylpropan - 1 - amine c) N,N - dimethyl - 2 - methylpropan - 2 - amine d) N,N - dimethylpropanamine
- 92) Match the following.

	Column I		Column II
I.	β -	А.	Mixed 2°
	Methylpropylar	nine	amine
Ii.	Di -	В.	1° Amine
	isopropylamine		
Iii.	Dimethyl -	C.	Simple 2°
	sec -		amine
	butylamie		
Iv.	Ethylisopropyla	mDine	Mixed 3°
			amine

[1]

a) I - c, ii - d, iii - b, iv а b) I - b, ii c, iii d, iv а c) I - b, ii - d, iii a, iv с d) I - d, ii - a, iii - b, iv с 93) Acetylation of glucose gives _. [1]

- - a) Glucose triacetate b) Glucose diacetate c) Glucose pentaacetate d) Glucose acetate
- 94) Which one given below is a non reducing sugar? [1]
- b) Glucose a) Lactose c) Maltose d) Sucrose
- 95) Which of the following can be remoulded and recycled? [1]
 - a) Fibers
 - b) Elastomers
 - c) Thermosetting polymers
 - d) Thermoplastic polymers
- 96) Which of the following is NOT a polymer ? [1]
 - a) Glucose b) Enzyme
 - c) RNA d) Starch
- 97) A similarity between nylon 6 and nylon 6,6 is that [1]
 - a) Starting materials used for their manufacture are isomers
 - b) They are isomers
 - c) They are polyamide polymers
 - d) The sum of all the carbon atoms in their monomers is six
- 98) The green technology developed by Drath and Frost is used for the synthesis of ____. [1]

a) HOOC - COOH b) CH₃ -
$$(CH_2)_4$$
 - COOH

c)
$$CH_2 = CH - COOH$$
 d) $HOOC - (CH_2)_4$
COOH

99) Salicylic acid + Acetyl chloride $\xrightarrow{pyridine}$ X + HCl The % atom economy for the preparation of 'X' will be _. [1]

- a) $\frac{138}{180} \times 100$ b) $\frac{180}{138} \times 100$ c) $\frac{216.5}{180} \times 100$
- c) $\frac{180}{216.5} \times 100$ d) $\frac{180}{216.5} \times 100$

100) Sol - gel process is based on _____ reactions. [1]

- a) Organic precipitation
- b) Inorganic precipitation
- c) Inorganic polymerization
- d) Organic decomposition

Section - B (Mathematics)

- 101) If $\sin \alpha = \frac{1}{\sqrt{5}}$ and $\sin \beta = \frac{3}{5}$, then β α lies in the interval [2]
 - a) $[0,\pi]$ b) $(\frac{\pi}{2},\frac{3\pi}{4})$ c) $(\pi,\frac{5\pi}{4})$ d) $(0,\frac{\pi}{4})$
- 102) On the portion of the straight line x + y = 2 which is intercepted between the axes, a square is constructed away from the origin with this portion as one of its side. If p denotes the perpendicular distance of a side of this square from the origin, then the maximum value of p is [2]
 - a) $3\sqrt{2}$ b) $\frac{2}{\sqrt{3}}$ c) $\frac{3}{\sqrt{2}}$ d) $2\sqrt{3}$
- 103) If one of the diameters of the curve $x^2 + y^2 4x 6y + 9 = 0$ is a chord of a circle with centre (1, 1), then the radius of this circle is [2] a) $\sqrt{2}$ b) 3 c) 2 d) 1
- 104) If the coefficient of variation of a distribution is 45% and the mean is 12, then its standard deviation is [2]
 a) 5.2
 b) 5.3
 c) 5.4
 d) 5.5
- 105) The probability that a leap year selected at random will contain 53 Sundays is [2]

a)	$\frac{1}{7}$	b)	$\frac{3}{7}$
c)	$\frac{2}{9}$	d)	$\frac{2}{7}$

- 106) For z = a + bi, if (a, b) lies in 3^{rd} quadrant, then arg z = [2]
 - a) $\frac{\pi}{2} + \tan^{-1} \left| \frac{b}{a} \right|$ b) $2\pi + \tan^{-1} \left| \frac{b}{a} \right|$ c) $\tan^{-1} \left| \frac{b}{a} \right|$ d) $-\pi + \tan^{-1} \left| \frac{b}{a} \right|$
- 107) Three different prizes are to be distributed in a class of 20 boys. In how many ways can this be done, if a boy is eligible to get any number of prizes. [2]
 a) 6480 b) 8000

c) 7220	d) 6840			
If $f(x) = \frac{3x+4}{5x-7}$, $g(x) = \frac{7x+4}{5x-3}$	then f $[g(x)] = [2]$			

- 108) If $f(x) = \frac{3x+4}{5x-7}$, $g(x) = \frac{7x+4}{5x-3}$ then f [g(x)]= [2] a) - 41 b) - x c) X d) 41
- 109) Which of the following statement is contradiction? [2]

a) $(p \land q) \rightarrow q$ b) $p \rightarrow \sim (p \land \sim q)$ c) $(p \land q) \lor \sim q$

d)
$$(p \wedge \sim q) \ \wedge (p \rightarrow q)$$

110) The inverse of the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 is [2]

$$\begin{array}{l} \begin{array}{c} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \\ \end{array} \\ \begin{array}{c} b \\ \frac{1}{24} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} \left[\frac{1}{2} & 0 & 0 \\ 0 & 0 & 4 \\ \end{array} \right] \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} \left[\frac{1}{2} & 0 & 0 \\ 0 & 0 & 4 \\ \end{array} \right] \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} \left[\frac{1}{2} & 0 & 0 \\ 0 & 0 & 4 \\ \end{array} \right] \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} \\ \end{array} \\$$

118) Let I =
$$\int_0^{100\pi} \sqrt{(1 - \cos 2x)} \, dx$$
, then [2]
a) I = 0 b) I = $\pi \sqrt{2}$
c) I = 100 d) I = $200\sqrt{2}$

119) Let $\frac{d}{dx}[f(x)] = \frac{e^{\sin x}}{x}$, x > 0. If $\int_{1}^{4} \frac{3e^{\sin x^{3}}}{x} dx = f(k) - f(1)$, then one possible of k is [2] a) 63 b) 64 c) 16 d) 15 120) $\int_0^{\frac{\pi}{6}} (2+3x^2) \cos 3x \, dx = [2]$ a) $\frac{1}{36}$ (π - 16) b) $\frac{1}{36}$ (π^2 - 16) c) $\frac{1}{36}$ (π + 16) d) $\frac{1}{36}$ (π^2 + 16) 121) $\int_0^{\frac{\pi}{2}} \log(\tan x) \, dx = [2]$ a) $-\frac{\pi}{2} \log_{e} 2$ b) $\pi \log_e 2$ c) 0 d) $\frac{\pi}{2} \log_e 2$ 122) If $\int_0^{\frac{\pi}{2}} \log(\cos x) \, dx = -\frac{\pi}{2} \log 2$, then $\int_0^{\frac{\pi}{2}} \log(\csc x) \, dx$ = [2] a) $\frac{\pi}{2} - \frac{\pi}{2} \log 2$ b) $\frac{\pi}{2} \log 2$ c) $-\frac{\pi}{2} \log 2$ d) $\frac{\pi}{2} + \frac{\pi}{2} \log 2$ 123) $(\vec{a}\cdot\hat{i})\hat{i}+ (\vec{a}\cdot\hat{j})\hat{j}+ (\vec{a}\cdot\hat{k})\hat{k}=$ [2] b) $2\vec{a}$ a) $4\vec{a}$ c) 0 d) *a* 124) The projection of the vector $\hat{i} - 2\hat{j} + \hat{k}$ on the vector $4\hat{i} - 4\hat{j} + 7\hat{k}$ is [2] a) $\frac{\sqrt{6}}{19}$ b) $\frac{19}{9}$ c) $\frac{9}{19}$ d) $\frac{5\sqrt{6}}{10}$ 125) If $3\hat{i} - 2\hat{j} + 5\hat{k}$ and $-2\hat{i} + p\hat{j} - q\hat{k}$ are collinear vectors, then [2] a) $p = \frac{10}{3}, q = \frac{4}{3}$ b) $p = \frac{4}{3}, q = \frac{-10}{3}$ c) $p = \frac{4}{3}, q = \frac{10}{3}$ d) $p = \frac{-4}{3}, q = \frac{10}{3}$ 126) The value of a so that the volume of parallelopiped formed by vectors $\hat{i} + a\hat{j} + \hat{k}$, $\hat{j} + a\hat{k}$, $a\hat{i} + \hat{k}$ becomes minimum is [2] a) $\sqrt{3}$ b) $\frac{1}{\sqrt{3}}$ d) 3 c) 2 127) If $12x^2 + 7xy + by^2 + gx + 7y - 1 = 0$ represents a pair of perpendicular lines then [2] a) B = 12, g = 1b) B = - 12, g = $-\frac{1}{2}$ c) B = -12, g = -1d) B = -12, g = 1

- 128) If L₁ is the line of intersection of the planes 2x 2y + 3z 2 = 0, x y + z + 1 = 0 and L₂ is the line of intersection of the planes x + 2y z 3 = 0, 3x y + 2z 1 = 0, then the distance of the origin from the plane containing the lines L₁ and L₂ is [2] a) $\frac{1}{4\sqrt{2}}$ b) $\frac{1}{2\sqrt{2}}$ c) $\frac{1}{\sqrt{2}}$ d) $\frac{1}{3\sqrt{2}}$
- 129) If P be the point (2, 6, 3), then the equation of the plane through P at right angle to OP, O being the origin, is [2] a) 2x + 6y + 3z = 7b) 2x + 6y - 3z = 49c) 2x + 6y + 3z = 49d) 2x + 6y + 3z = 7130) Equation of a line passing through point (2, - 1, 3) and parallel to $\lim_{x \to 1} \frac{2x-1}{2} = \frac{1-y}{1} = \frac{z}{3}$ is [2] a) $\frac{x+2}{1} = \frac{y-1}{-1} = \frac{z+3}{3}$ b) $\frac{x-2}{1} = \frac{y+1}{1} = \frac{z-3}{3}$ c) $\frac{x-2}{2} = \frac{y+1}{1} = \frac{z-3}{3}$ d) $\frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-3}{3}$ 131) The derivative of $f(x) = x^{\tan^{-1} x}$ with respect to g(x) = $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ is [2] a) $-\frac{1}{2}\sqrt{1-x^2}x^{\tan^{-1}x} \left[\log(\tan^{-1}x) + x(1+x^2)\tan^{-1}x\right]$ b) $\frac{1}{2}\sqrt{1-x^2}x^{\tan^{-1}x} \left[\frac{\log x}{1+x^2} + \frac{\tan^{-1}x}{x}\right]$ c) $\frac{-2\tan^{-1}x\left[\frac{\log x}{1+x^2} + \frac{\tan^{-1}x}{x}\right]}{\sqrt{1-x^2}}$ d) $-\frac{1}{2}\sqrt{1-x^2}x^{\tan^{-1}x} \left[\frac{\log x}{1+x^2} + \frac{\tan^{-1}x}{x}\right]$ 132) If $x = \log t$, t > 0 and $y = \frac{1}{t}$, then $\frac{d^2y}{dx^2}$ is [2] a) $-\frac{dy}{dx}$ b) Y c) $\frac{dy}{dx}$ d) $\frac{y}{dx}$ 133) Twenty meters of wire is available for fencing off a flower - bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower - bed, is [2] a) 25 b) 10 c) 30 d) 12.5 134) Let P be any point on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$. Then the length of the segment of the tangent between the coordinate axes is of length [2] a) 5a b) A c) 4a d) 3a 135) If the normal to the curve $y^2 = 5x - 1$ at the point (1, - 2) is of the form ax - 5y + b = 0, then a and b are [2] a) 4, - 14 b) - 4, 14 c) - 4, - 14 d) 4, 14 136) The equation of the tangent to the curve $(1 + x^2)y = 2$ - x, where it crosses the X - axis, is [2] b) 5x + y = 2a) X + 5y = 2c) 5x - y = 2d) X - 5y = 2137) $\int \tan^{-1} \sqrt{\frac{1-x}{1+x}} \, \mathrm{d}x =$ [2] a) 2 $(x \cos^{-1}x - \sqrt{1-x^2}) + c$ b) $\frac{1}{2} (\cos^{-1}x - \sqrt{1-x^2}) + c$ c) $\frac{1}{2} (x \cos^{-1}x - \sqrt{1-x^2}) + c$ d) $\frac{1}{2} (x \sin^{-1}x - \sqrt{1-x^2}) + c$ 138) $\int \frac{dx}{1-\sin x} = [2]$ a) Sec x + tan x + c b) $X + \cos x + c$ c) $1 + \sin x + c$ d) Sec $x - \tan x + c$ 139) $\int x^4 e^{2x} dx = [2]$ a) $\frac{e^{2x}}{4}$ (2x⁴ - 4x³ + 6x² - 6x + 3) + c b) $-\frac{e^{2x}}{4}$ (2x⁴ + 4x³ + 6x² + 6x + 3) + c c) $\frac{e^{2x}}{8}$ (2x⁴ + 4x³ + 6x² + 6x + 3) + c d) $\frac{e^{2x}}{4}$ (2x⁴ - 4x³ + 6x² - 6x + 3) + c 140) Let I = $\int \frac{e^x}{e^{4x} + e^{2x} + 1} dx$, J = $\int \frac{e^{-x}}{e^{-4x} + e^{-2x} + 1} dx$
 - 140) Let $I = \int \frac{1}{e^{4x} + e^{2x} + 1} dx$, $J = \int \frac{1}{e^{-4x} + e^{-2x} + 1} dx$ Then, for an arbitrary constant C, the value of J - I equals [2]

- a) $\frac{1}{2} \log \left| \frac{e^{4x} e^{2x} + 1}{e^{4x} + e^{2x} + 1} \right| + C$ b) $\frac{1}{2} \log \left| \frac{e^{4x} + e^{2x} + 1}{e^{4x} - e^{2x} + 1} \right| + C$ c) $\frac{1}{2} \log \left| \frac{e^{2x} + e^{x} + 1}{e^{2x} - e^{x} + 1} \right| + C$ d) $\frac{1}{2} \log \left| \frac{e^{2x} - e^{x} + 1}{e^{2x} + e^{x} + 1} \right| + C$
- 141) The area enclosed by the parabola $(y 2)^2 = x 1$, the tangent to the parabola at (2, 3) and the X - axis is [2]
 - a) 12 sq. units b) 9 sq. units
 - c) 4 sq. units d) 6 sq. units
- 142) Area bounded by the curve $y = \log x$, X axis and the ordinates x = 1, x = 2 is [2]
 - a) Log 4 sq. units
 - b) Log 2 sq. units
 - c) (log 4 1) sq. units
 - d) (log 4 + 1) sq. units
- 143) General solution of $(x+y)^2 \frac{dy}{dx} = a^2$, $a \neq 0$ is (c is arbitrary constant) [2]
 - a) $\tan \frac{y+c}{a} = \frac{x+y}{a}$ b) $\frac{x}{a} = \tan \frac{y}{a} + c$ c) Tan xy = c d) Tan (x + y) = c
- 144) Let y'(x) + y(x)g'(x) = g(x) g'(x), y(0) = 0, $x \in \mathbb{R}$, where f'(x) denote $\frac{d}{dx}$ (f(x)) and g(x) is a given non - constant differentiable function on R with g(0) = g(2) = 0. Then the value of y(2) is [2] a) - 1 b) 1
 - c) 2 d) 0

145) The solution of the equation
$$\frac{dy}{dx} = \frac{x}{2y-x}$$
 is [2]

a) Y = x + cb) $y = \frac{x}{2y-x} + c$ c) $(x + y)(x - 2y)^2 = c$ d) $(x - y)(x + 2y)^2 = c$ 146) The differential equation for all the straight lines which are at a unit distance from the origin is [2]

a)
$$\left(y + x \frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$$

b) $\left(y - x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$
c) $\left(y + x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$
d) $\left(y - x \frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$

147) What is the mean of f(x) = 3x + 2 where x is a random variable with probability distribution

148) A random variable X has the following probability distribution:

X =	1	2	3	4	
xi					
P(X =	0.1	0.2	0.3	0.4	
x _i)					

The	me	ean	and	the	standard	deviati	on	are	respectively	[2]
a)	3	an	d 1			b)	2	and	1	
c)	3	an	$d\sqrt{3}$			d)	3	and	2	

149) A die is thrown two times. If getting an odd number is considered as a success, then the probability of two successes is [2]

a)
$$\frac{1}{2}$$
 b) $\frac{2}{3}$
c) $\frac{3}{4}$ d) $\frac{1}{4}$

150) If X follows a binomial distribution with parameters n = 6 and p. If 4P(X = 4) = P(X = 2), then p = [2] a) $\frac{1}{3}$ b) $\frac{1}{4}$ c) $\frac{1}{6}$ d) $\frac{1}{2}$