

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

MATHS

JEE main - Mathematics

Time Allowed: 1 hour

General Instructions:

- All questions are compulsory.
- There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

MATHS (Section-A)

1. The range of the function f : R - {1, 3}
$$\rightarrow$$
 R defined by f(x) = $\frac{2x^2 - 5x - 3}{x^2 - 4x + 3}$ is [4]

d) R -

- c) R {2}
- A complex number z satisfies |z| = 1. If Im(z) < 0 then arg 2.
 - a) $-\frac{\pi}{4}$ c) $-\frac{3\pi}{4}$

In how many ways can the letters of the word **INTERMEDIATE** be arranged so that the two vowels do not 3. [4] occur together?

b)

d) $\frac{\pi}{d}$

a) 151200

c) 51200

If |x| is small so that x^2 and higher powers of x may be neglected, then an approximate value of 4.

$$\frac{\left(1+\frac{2}{3}x\right)^{-3}(1-15x)^{-\frac{1}{5}}}{(2-3x)^4}$$
 is
a) $\frac{1}{16}(1+7x)$ b) $\frac{1}{8}(1+7x)$
c) $\frac{1}{16}(1-7x)$ d) 1 - 7x

5. If A₁, A₂; G₁, G₂ and H₁, H₂ are two A.M.'s, G.M.'s and H.M.'s between two numbers respectively, then [4] $rac{G_1G_2}{H_1H_2} imes rac{H_1+H_2}{A_1+A_2} =$

a) 1 b) 2 c) 0 d) 3

6. If
$$f(x) = \begin{cases} x+a, & x \le 0 \\ |x-4|, & x > 0 \end{cases}$$
 and $g(x) = \begin{cases} x+1, & x < 0 \\ (x-4)^2+b, & x \ge 0 \end{cases}$ are continuous on R, then (gof) (2) + [4] (fog) (-2) is equal to:

a) -8	b) 8
-------	------

c) 10 d) -10 **Maximum Marks: 100**

[4]

[4]

- b) 5040

- d) 15120

- 7. If a_1 , a_2 , a_n are positive real numbers whose product is a fixed number e, the minimum value of $a_1 + a_2 + a_3 + ...$ [4] $a_{n-1} + 2a_n$ is:
 - a) $_{2ne^{1/n}}$ b) $_{n(2e)^{1/n}}$

c)
$$(n + 1) e^{1/n}$$
 d) $(n + 1) (2e)^{1/n}$

8. If f(a + b + 1 - x) = f(x), for all x, where a and b are fixed positive real numbers, then $\frac{1}{a+b} \int_{a}^{b} x(f(x) + f(x + 1)) dx$ [4]

is equal to:

a)
$$\int_{a-1}^{b-1} f(x+1)dx$$

b)
$$\int_{a+1}^{b+1} f(x+1)dx$$

c)
$$\int_{a+1}^{b+1} f(x)dx$$

d)
$$\int_{a-1}^{b-1} f(x)dx$$

- 9. If the line 2x + 3y = 3 intersects the circle $x^2 + y^2 4 = 0$ at , A and B and M (α, β) is point of intersection of the **[4]** tangents at A and B, then $\frac{\alpha}{\beta}$ is equal to :
 - a) $\frac{3}{2}$ c) $\frac{3}{4}$
- 10. Locus of the point of intersection of the pair of perpendicular tangents to the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 7$ [4] is the director circle of the circle with radius.

b) 4

d) $2\sqrt{2}$

- a) $\sqrt{2}$
- c) 2
- 11. In a square matrix A = $[a_{ij}]$ of order 3, $a_{ii} = m_i + i$, where i = 1, 2, 3 m'_i 's are slopes ($|M_1| < |M_2| < |M_3|$) of the 3 [4] normals concurrent at the point (9, 6) to the parabola $y^2 = 4x$. Rest of all other entries are one. The value of tr. (A) is equal to:

b) 6

d) -3

- a) -6
- c) 3
- 12. Let the solution curve of the differential equation $x \frac{dy}{dx} y = \sqrt{y^2 + 16x^2}$, y(1) = 3 be y = y(x). Then y(2) is [4] equal to:
 - a) 17 b) 13
 - c) 11 d) 15
- 13. A vector \vec{r} has length 6 units and direction ratios proportional to 2, -1, 2. Given that \vec{r} makes an obtuse angle [4] with x-axis. The component of \vec{r} along x-axis is:
 - a) -6 b) -4
 - c) 4 d) 6

0

14. Let $A(\vec{a})$, $B(\vec{b})$, $C(\vec{c})$ and $D(\vec{d})$ be the vertices of a convex quadrilateral. Consider the following statements: [4]

$$\frac{|\mathbf{b}\times\vec{c}+\vec{c}\times\vec{a}+\vec{a}\times\mathbf{b}|}{\overrightarrow{\mathbf{B}}\overrightarrow{\mathbf{A}}\cdot\overrightarrow{\mathbf{BC}}} + \frac{|\vec{c}\times\vec{d}+\vec{d}\times\vec{a}+\vec{a}\times\vec{c}|}{\overrightarrow{\mathbf{D}}\overrightarrow{\mathbf{A}}\cdot\overrightarrow{\mathbf{DC}}} =$$

$$\Box \mathbf{ABCD} \text{ is cyclic}$$

III. $\tan B + \tan D = 0$

I

Π

nd II only
r

- c) II and III only d) I, II and III
- 15. The variance of first 50 even natural numbers is:

a) 437	b) $\frac{437}{4}$
c) 833	d) $\frac{833}{4}$

- 16. For three events A, B and C, if P (exactly one of A or B occurs) = P(exactly one of B or C occurs) = P (exactly [4] one of C or A occurs) = $\frac{1}{4}$ and P (all the three events occur simultaneously) = $\frac{1}{16}$, then the probability that atleast one of the events occurs, is
 - a) $\frac{7}{64}$ b) $\frac{7}{16}$ c) $\frac{3}{16}$ d) $\frac{7}{32}$
- 17. If $\cos \alpha + \cos \beta = \frac{3}{2}$ and $\sin \alpha + \sin \beta \frac{1}{2}$ and θ is the arithmetic mean of α and β , then $\sin 2\theta + \cos 2\theta$ is equal [4] to:

a)
$$\frac{8}{5}$$
 b) $\frac{3}{5}$
c) $\frac{7}{5}$ d) $\frac{4}{5}$

18. If the latus rectum of a hyperbola subtends right angle at its centre, then its eccentricity is:

a) $\sqrt{2}$ c) $\frac{\sqrt{3}+1}{2}$

19. A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the [4] people read both the newspapers, then a possible value of x can be:

b) 55

d) 65

b) $\frac{\sqrt{3}+\sqrt{5}}{2}$ d) $\frac{\sqrt{5}+1}{2}$

- a) 37
- c) 29
- 20. Let A and B be two invertible matrices of order 3×3 . If det(ABA^T) = 8 and det(AB⁻¹) = 8, then det(BA⁻¹B^T) is [4] equal to
 - a) $\frac{1}{4}$ c) $\frac{1}{16}$ b) 1 d) 16

MATHS (Section-B)

- 21. Let $a_n \ (e \ge 1)$ be the value of x for which $\int_x^{2x} e^{-t^n} dt \ (x > 0)$ is maximum. If $L = \lim_{n \to \infty} \ln(a_n)$ then find the value of e^{-L}
- 22. Let $\vec{p} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{q} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. If a vector $\vec{r} = (\alpha\hat{i} + \hat{\beta}\hat{j} + \gamma\hat{k})$ is perpendicular [4] to each of the vectors $(\vec{p} + \vec{q})$ and $(\vec{p} \vec{q})$, and $|\vec{r}| = \sqrt{3}$, then $|\alpha| + |\beta| + |\gamma|$ is equal to _____.
- 23. Let f(x) be a polynomial of degree 3. If the curve y = f(x) has relative extrema at $x = \frac{\pm 2}{\sqrt{3}}$ and passes through (0, **[4]** 0) and (1,-2) dividing the circle $x^2 + y^2 = 4$ in two parts, then the area bounded by $x^2 + y^2 = 4$ and $y \ge f(x)$ is $\frac{k\pi}{2}$. Find the value of k.
- 24. Suppose f is a function satisfying f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{N}$ and $f(1) = \frac{1}{5}$. If $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)} = \frac{1}{12}$, [4] then m is equal to ______.

[4]

3/4

[4]

[4]

25. If
$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $Y = aI + BX + gX^2$ and $Z = \alpha^2 I - \alpha\beta X + (\beta^2 - \alpha\gamma)X^2$, $\alpha, \beta, \gamma \in \mathbb{R}$.
If $Y^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{-2}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & \frac{-2}{5} \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$, then $(\alpha - \beta + \gamma)^2$ is equal to _____.

