

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

MATHS

JEE main - Mathematics

Time Allowed: 1 hour

General Instructions:

Maximum Marks: 100

- All questions are compulsory.
- There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

MATHS (Section-A)

1.	If $f(x)=rac{5x+3}{7x-5}$, then		[4]
	a) $f^{-1}(x) = f(x)$	b) $f^{-1}(x) + f(x) = 0$	
	c) (fof) (x) = -x	b) $f^{-1}(x) + f(x) = 0$ d) $f^{-1}(x) = \frac{1}{3}f(x)$	
2.	If $ z - 1 = 2$ and $z \neq -1$, 3 then all the values $\frac{3+2z-z^2}{z-1}$		[4]
	a) z - 1 = 4	b) the imaginary axis	
	c) a line not passing through the origin	d) the real axis	
3.	The number of 4 digit numbers (with no repetition) to	o be formed from 1, 2, 3, 4 and divisible by 4 are	[4]
	a) 6	b) 44	
	c) 64	d) 24	
4.	If the coefficients of x^2 and x^3 are both zero, in the e	xpansion of the expression $(1 + ax + bx^2) (1 - 3x)^{15}$ in	[4]
	powers of x, then the ordered pair (a, b) is equal to		
	a) (- 21, 714)	b) (28, 861)	
	c) (-54, 315)	d) (28, 315)	
5.	If a, b, c are in A.P., then $\frac{1}{\sqrt{a}+\sqrt{b}}, \frac{1}{\sqrt{a}+\sqrt{c}}, \frac{1}{\sqrt{b}+\sqrt{c}}$ are	e in:	[4]
	a) G.P.	b) H.P.	
	c) H.M.	d) A.P.	
6.	The number of points of non-differentiability of $f(x) = \max(x - 1 , \frac{1}{2})$ is		[4]
	a) 2	b) 3	
	c) 5	d) 4	
7.	A spherical iron ball of radius 10 cm is coated with a	layer of ice of uniform thickness that melts at a rate of 50	[4]

A spherical from ball of radius 10 cm is coated with a layer of ice of uniform thickness that melts at a rate of 50 [4] cm³/min. When the thickness of the ice is 5 cm, then the rate at which the thickness (in cm/min) of the ice decreases, is

	a) $\frac{1}{18\pi}$	b) $\frac{1}{9\pi}$	
	2011	d) $\frac{5}{6\pi}$	
	C) $\frac{1}{36\pi}$	0/1	[4]
8.	If $2\int_{0}^{1} \tan^{-1} x dx = \int_{0}^{1} \cot^{-1} (1 - x + x^{2}) dx$, then $\int_{0}^{1} \tan^{-1} (1 - x + x^{2}) dx$ is equal to		ניין
	a) log 4	b) log 2	
	c) $\frac{\pi}{2} + \log 2$	d) $\frac{\pi}{2} - \log 4$	
9.		roots of the equation $x^2 - 4x + 1 = 0$ and the included angle	[4]
	between them is $\frac{\pi}{3}$ then the value of $\left(\frac{c^2}{a+b}\right)$ is :		
	a) $\frac{4}{13}$	b) $\frac{1}{4}$	
	c) $\frac{13}{4}$	d) 4	
10.	P is a lattice point (a point having integer coordinat	es) in the $1^{ m st}$ quadrant. The segment joining $(\sqrt{33},\sqrt{17})$ and	[4]
	$(-\sqrt{33},-\sqrt{17})$ subtends a right angle at P. The m	umber of points which satisfy P are	
	a) 4	b) 3	
	c) 2	d) 12	
11.	The locus of the middle points of the focal chords of	f the parabola, $y^2 = 4x$ is:	[4]
	a) $y^2 = 3(x - 1)$	b) $y^2 = 2(x - 1)$ d) $y^2 = x - 1$	
	c) $y^2 = 2(1 - x)$		
12.	Let $y'(x) + rac{g'(x)}{g(x)}, y(x) = rac{g'(x)}{1+q^2(x)}$ where f'(x) den	otes $\frac{df(x)}{dx}$ and g(x) is a given non-constant differentiable	[4]
	function on R. If $g(1) = y(1) = 1$ and $g(e) = \sqrt{(2e - 1)^2}$		
	a) $\frac{2}{3g(e)}$	b) $\frac{3}{2g(e)}$	
	C) $\frac{1}{3q(e)}$	d) $\frac{1}{2q(e)}$	
13.		ts distances from the six faces of a cube given by $x = \pm 2$, $y =$	[4]
	± 2 , z = ± 2 is 28 units. The locus of the point is:		
	a) $x + y + z = 1$ c) $x^2 + y^2 + z^2 = 1$	b) $x + y + z = 2$	
	c) $x^2 + y^2 + z^2 = 1$	d) $x^2 + y^2 + z^2 = 2$	
14.	Let $ec{a}=-\hat{i}-j+\hat{k},ec{a}\cdotec{b}=1$ and $ec{a} imesec{b}=\hat{i}-ec{c}$. Then $ec{a}-6ec{b}$ is equal to	[4]
	a) $3(\hat{i}+\hat{j}+\hat{k})$	b) $3(\hat{i}-\hat{j}-\hat{k})$	
	c) $3(\hat{i}-\hat{j}+\hat{k})$	d) 3 $(\hat{i}+\hat{j}-\hat{k})$	
15.	If 25% of the items are less than 20 and 25% are mo	pre than 40, the quartile deviation is	[4]
	a) 40	b) 10	
	c) 20	d) 30	
16.	Numbers 1 to 100 are written on slips of papers and	are kept in a box. A draws one slip randomly and replaces it.	[4]
	B then draws a slip randomly. What is the probabili	ty that B draws a bigger number?	

a)
$$\frac{99}{20000}$$
 b) $\frac{99}{500}$

	c) $\frac{49}{500}$	d) $\frac{99}{200}$		
17.	If $\frac{\pi}{2} < \alpha < \pi$, then $\sqrt{\frac{1-\sin \alpha}{1+\sin \alpha}} + \sqrt{\frac{1+\sin \alpha}{1-\sin \alpha}}$ is equal to:			
	a) -2 sec α	b) 2 cos α		
	c) -2 cos α	d) 2 sec α		
18.	If the circle $x^2 + y^2 = k^2$ and the rectangular hyperbol integral values of k, is:	a xy = k have no points in common, then the number of	[4]	
	a) 3	b) 0		
	c) 2	d) 1		
19.	The set of intelligent students in a class is	~	[4]	
	a) A finite set	b) A singleton set		
	c) Not a well defined collection	d) A null set		
20.	If $\begin{vmatrix} 2a & x_1 & y_1 \\ 2b & x_2 & y_2 \\ 2c & x_3 & y_3 \end{vmatrix} = \frac{abc}{2} \neq 0$, then the area of the trians	angle whose vertices are $\left(\frac{x_1}{a}, \frac{y_1}{a}\right), \left(\frac{x_2}{b}, \frac{y_2}{b}\right), \left(\frac{x_3}{c}, \frac{y_3}{c}\right)$	[4]	
	a) $\frac{1}{4}$ abc	b) $\frac{1}{4}$		
	c) $\frac{1}{8}$	d) $\frac{1}{8}$ abc		
	Ů	(Section-B)		
21.		6, and has a local minima at $x = 1$, and f'(x) has a local	[4]	
	minima at $x = -1$. Then f(3) is equal to			
22.	A line \mathbf{L} passing through origin is perpendicular to the	e lines	[4]	
	$L_1:ec{r}=(3+t)\hat{i}+(-1+2t)\hat{j}+(4+2t)\hat{k}$			
	$L_2: ec{r} = (3+2s)\hat{i} + (3+2s)\hat{j} + (2+s)\hat{k}$			
		$_2$ at a distance of $\sqrt{17}$ from the point of intersection of L		
	and L_1 are (a, b, c) then 18(a + b + c) is equal to			
23.	Let the area of the region $\{(x,y): 2x-1 \le y \le x \}$	$ x^2-x ,\;0\leq x\leq 1\}$ be A.	[4]	
	Then $(6A + 11)^2$ is equal to	10. 8		
24.	Let a_1 = b_1 = 1 and a_n = $a_{n\text{-}1}$, b_n = $b_{n\text{-}1}$ + $a_{n\text{-}1}$, $\forall \mathbf{n} \geq$	2. If $S = \sum_{n=1}^{10} rac{b_n}{2^n}$ and $\mathrm{T} = \sum_{\mathrm{n}=1}^8 rac{\mathrm{n}}{2^{\mathrm{n}-1}}$, then 2 ⁷ (2S - T) is	[4]	
	equal to			
25.	Let a, b and c be three real numbers satisfying $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$		[4]	
	$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \dots \dots (i)$			
		a + b = a + b = b + a + b = a + b = a + b = a + b + a + b + a + b = a + b + a + b + a + b + a + b = a + b + a + a		
	If the point P (a, b, c), with reference to Eq. (i), lies o	The plane $2x + y + z = 1$, then the value of $7a + b + c$ is		
	If the point P (a, b, c), with reference to Eq. (i), lies o	In the plane $2x + y + z = 1$, then the value of $7a + b + c$ is		