

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

MATHS

JEE main - Mathematics

Time Allowed: 1 hour

General Instructions:

- All questions are compulsory.
- There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

MATHS (Section-A)

1. If a polynomial function f satisfies the relation $\log_2 [f(x)] = \log_2$

$$\left(2+\frac{2}{3}+\frac{2}{9}+\ldots+\infty\right)\cdot\log_{3}\left(1+\frac{f(x)}{f\left(\frac{1}{x}\right)}\right)$$
 and f (10) = 1001, then the value of f (20) is:

a) 7999

c) 8001

c) 680

3.

2. Let the complex number z = x + iy be such that $\frac{2z-3i}{2z+i}$ is purely imaginary. If $x + y^2 = 0$, then $y^4 + y^2 - y$ is equal [4] to:

b) 16001

d) 2002

a) $\frac{4}{3}$ c) $\frac{3}{4}$ The value of $\sum_{r=1}^{15} r^2 \left(\frac{{}^{15}C_r}{{}^{15}C_{r-1}} \right)$ is equal to: a) 1085 b) 560 [4]

d) 1240

- 4. The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$ is
 - a) 990 b) 605
 - c) 660 d) 330
- 5. Let a_r be the rth term of an A.P. If $a_{11} = 45$ then the common difference that would make the value of $a_2a_6a_{11}$ [4] least's equal to:
 - a) 3 b) 4
 - c) 14 d) 7

6. If
$$p^2 = a \cos^2 \theta + b^2 \sin^2 \theta$$
, then $p^2 + p \frac{d^2 p}{d\theta^2}$ equals:

a)
$$\frac{a^4b^4}{p^3}$$
 b) $\frac{a^2b^2}{p^2}$
c) $\frac{a^2b^2}{p^4}$ d) $\frac{ab}{p^2}$

1/3

[4]

Maximum Marks: 100

[4]

[4]

Maximum value of $(\frac{1}{x})^x$ is: 7. [4] a) $(e)^{\frac{1}{e}}$ b) (e)^{-e} c) 1 d) (e)^e $\lim_{n \to \infty} \frac{3}{n} \left\{ 4 + \left(2 + \frac{1}{n}\right)^2 + \left(2 + \frac{2}{n}\right)^2 + \ldots + \left(3 - \frac{1}{n}\right)^2 \right\} \text{ is equal}$ [4] 8. a) 12 b) 19 c) $\frac{19}{3}$ d) 0 Let ABC be a right triangle with $\angle BAC = 90^{\circ}$ then $\left(\frac{r^2}{2R^2} + \frac{r}{R}\right)$ is equal to : (where r and R have usual [4] 9. meaning in triangle.) b) tan B tan C a) sin B sin C d) sec B sec C c) cot B cot C If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$, then the value of c is [4] 10. a) 185 b) 95 d) 85 c) 195 [4] 11. The point at which the line y = mx + c touches the parabola $y^2 = 4ax$ is a) $\left(-\frac{a}{m^2},\frac{2a}{m}\right)$ C) $\left(\frac{a}{m^2}, \frac{-2a}{m^2}\right)$ d) $\left(-\frac{a}{m^2}\right)$ The general solution of the differential equation $\frac{dy}{dx}$ - 3x²y = 2y is: [4] 12. b) $y = ce^x$ a) y = ce^{2x+x^3} c) $v = ce^{2x}$ d) $y = ce^x$ A plane P meets the coordinate axes at A, B and C respectively. The centroid of \triangle ABC is given to be (1, 1, 2). 13. [4] Then the equation of the line through this centroid and perpendicular to the plane P is: b) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$ d) $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$ a) $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ c) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$ In R², if the magnitude of the projection vector of the vector $\alpha \hat{i} + \beta \hat{j}$ on $3\hat{i} - 4\hat{j}$ is 1 and if $\alpha - 2\beta = 1$, then [4] 14.

the value of β is equal to

a) 1 b) 0

- 15. If the mean of 11 observations of a data is 70 and that of first six observations is 72 and of last six observations [4] is 60, then the middlemost observation is
 - a) 22 b) 20

16. If
$$P(C) = \frac{5}{6}$$
, $P(A \cap \overline{B} \cap C) = \frac{2}{7}$ and $P(\overline{A} \cap \overline{B} \cap C) = \frac{1}{7}$, then $P(B \cap C) =$ [4]
a) $\frac{3}{14}$ b) $\frac{17}{42}$

c)
$$\frac{4}{7}$$
 d) $\frac{2}{21}$

 17. The value of sum sin 1° + sin 2° + + sin 359° + sin 360° is equal to :
 [4]

 a) 0
 b) - sin 1°

 () $\sin 1^{\circ}$
 () 1

 18. The equation of the transverse and conjugate axes of a hyperbola are respectively $x + 2y - 3 = 0, 2x - y + 4 = 0$
 [4]

 and their respective lengths are $\sqrt{2}$ and $\frac{2}{\sqrt{3}}$. The equation of the hyperbola is:
 a) $\frac{2}{5}(x + 2y - 3)^2 - \frac{3}{6}(2x - y + 4)^2 = 1$
 b) $2(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 [4]

 and their respective lengths are $\sqrt{2}$ and $\frac{2}{\sqrt{3}}$. The equation of the hyperbola is:
 a) $\frac{2}{5}(x + 2y - 3)^2 - \frac{3}{6}(2x - y + 4)^2 = 1$
 b) $2(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 [4]

 a) $\frac{2}{5}(x + 2y - 3)^2 - \frac{3}{6}(2x - y + 4)^2 = 1$
 b) $2(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 [4]

 a) $\frac{2}{5}(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 b) $2(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 [4]

 a) $\frac{2}{5}(x + 2y - 3)^2 - 3(x + 2y - 3)^2 = 1$
 b) $2(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 [4]

 a) $\Delta = 0$
 $2(x + 2y - 3)^2 - 3(2x - y + 4)^2 = 1$
 b) $2(x + 2y - 3)^2 = 1$
 [4]

 a) $\Delta = 0$
 $B = \sqrt{2}$
 $A \cap B \neq \phi$
 [4]

 a) $\Delta = B = R^2$
 b) $A \cap B \neq \phi$
 [4]
 [3]
 7

 20.
 The value of $\begin{bmatrix} 2 & 3 & 7 \\ 3 & 7 \\$

25. Let
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
, $x \in R$ and $A^4 = [a_{ij}]$. If $a_{11} = 109$, then a_{22} is equal to _____. [4]