

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

CHEMISTRY

JEE main - Chemistry

Maximum Marks: 100

Time Allowed: 1 hour General Instructions:

- All questions are compulsory.
- There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

CHEMISTRY (Section-A)

b) 16

d) 72

d) $1s^2 2s^2$

b) $K_p = K_c [RT]^{a+b}$

- 1. Maximum number of electrons that can be accommodated in shell with n = 4 are:
 - a) 50
 - c) 32
- 2. Which of the following ground state electronic configuration of an atom requires the lowest energy to remove an [4] electron from its isolated gaseous atom?
 - a) $1s^2 2s^2 2p^3$
 - c) $_{1s^2} _{2s^2} _{2p^6}$
- 3. The correct relation between K_p and Kc for the reaction $aX + bY \rightarrow bZ + aW$ is:

a)
$$K_p = rac{K_c}{(a+b)^2}$$

c)
$$K_p = K_c[RT]$$

4. For an adiabatic expansion of a perfect gas $\frac{\Delta P}{P}$ is equal to:

a)
$$\gamma \frac{\Delta V}{V}$$

b) $-\gamma \frac{\Delta V}{V}$
c) $\frac{\Delta V}{V}$
d) $-\gamma^2$

5. The reaction that proceeds in forward reaction:

a)
$$NH_4Cl + NaOH \rightarrow H_2O + NH_3 + NaCl$$
 b) $Mn^{2+} + 2H_2O + 2Cl_2 \rightarrow MnO_2 + 4H^+ + 4H_2O^+ + 2H_2O^+ +$

2Cl⁻

 $\frac{\Delta V}{V}$

c) $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$ d) $S_4O_6^{2-} + 2I^- \longrightarrow 2S_2O_3^{2-} + I_2$

6. Which of the following is not an example of redox reaction?

i. CuO + H₂
$$\rightarrow$$
 Cu + H₂O
ii. Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂
iii. 2K + F₂ \rightarrow 2KF
iv. BaCl₂ + H₂SO₄ \rightarrow BaSO₄ + 2HCI

1/4

[4]

[4]

[4]

[4]

[4]

	a) ii and iii	b) iv and i	
	c) i and ii	d) iii and iv	
7.	Lead pipes are corroded quickly by:		[4]
	a) Conc. H ₂ SO ₄	b) Dil. H ₂ SO ₄	
	c) Acetic acid	d) Water	
8.	In CH_3CH_2OH , the bond that undergoes heterolytic of	cleavage most readily is	[4]
	a) O-H	b) C-C	
	c) C-H	d) C-O	
9.	Which of the following compounds will show aroma	tic character?	[4]
	I II III IV		
	a) II and IV	b) I, II and IV	
	c) I and II	d) II and III	
10.	A 5% solution (by mass) of cane sugar in water has f	reezing point of 271 K and freezing point of pure water is	[4]
	273.15 K. The freezing point of a 5% solution (by ma	ass) of glucose in water is	
	a) 271 K	b) 269.07 K	

- a) 271 K c) 273.15 K
- Which of the following is correct for a 10% and 20% (w/w) aqueous solution of sucrose? (K_b of water = 0.52 K 11. [4] kg mol⁻¹)

d) 277.23 K

				Α.Χ.			
a)	Solution of sucrose (w/w)	Molality (mol kg-1)	В.Р. (⁰ С)	b)	Solution of sucrose (w/w)	Molality (mol kg-1)	B.P. (°C)
	10%	0.32	100.167	7	10%	0.21	100.151
	20%	0.73	100.380		20%	0.92	100.337
				I 1			
c)	Solution of sucrose (w/w)	Molality (mol kg-1)	B.P. (°C)	d)	Solution of sucrose (w/w)	Molality (mol kg ⁻¹)	B.P. (°C)
c)				d)			

12. Electrolysis of molten I (CH₃COO)₃ liberates the gases at anode and cathode in the ratio of:

> a) 1:6 b) 9:1 c) 6 : 1 d) 1:12

13. Which one is correct about order of reaction?

2/4

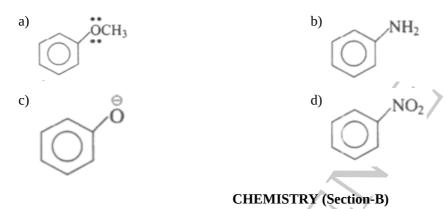
[4]

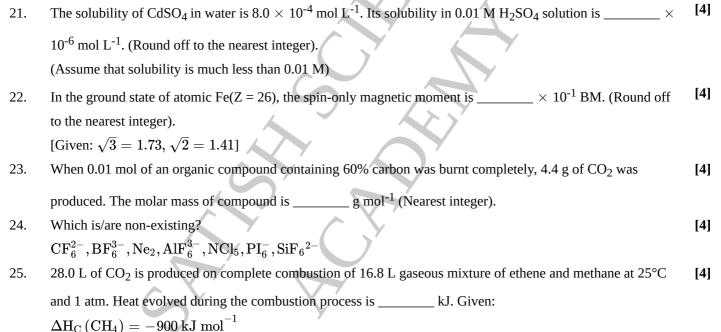
[4]

	i. Amide	а. р-СН ₃ С ₆ Н ₅ (ОН)		
	Column A		Column B	
18.	Match the following:	<i>4</i>		[4]
	c) CCI	V		
		Y		
		Y (b) CICCI,	
	FeCI,	5		
	CCI3 CI2			
17.	The major product of the follow			[4]
	formation of coordinate b		determines me geometry of complex.	
	 c) The coordination number number of vacant orbitals 		 d) The hybridization of metal orbitals determines the geometry of complex. 	
	with ligands.		\sim \rightarrow	
	metal are utilized in the c		KIY K	
	a) A definite number of vaca		b) All of these	_
16.	Which of the following stateme	ents is correct for val	ence bond theory?	[4]
	c) [I ₃]-		d) XeF ₄	
	a) SnF ₄		b) [ClO ₃]-	
15.	Which species has the maximum	n number of lone pa	ir of electron on the central atom?	[4]
	c) basic copper carbonate an	id sulphate	d) copper oxide	
	a) copper nitrate		b) copper sulphide	
14.	In the atmosphere of industrial	smog, copper corrod		[4]
	c) all of these		 d) It represents the dependence of reaction rate on concentration of reacting species 	
	reaction		that must collide for the reaction to occur	
	necessarily related to the	stoichiometry of	reaction, that is, by the number of species	
	a) It is determined empirical	ly and is not	b) It is governed by the mechanism of the	

i. Amide	a. p-CH ₃ C ₆ H ₅ (OH)
ii. Alcohol	b. C ₆ H ₅ CH ₂ OCH ₃
iii. Enol	c. $C_6H_5CH_2(CH_2)_2CH = CHOH$
iv. Phenol	d. C ₂ H ₅ CONH ₂
	е. CH ₃ (CH ₂) ₃ CH ₂ OH

a) i - b, ii - d, iii - e, iv - c


b) i - d, ii - c, iii - e, iv - a


c) i - d, ii - e, iii - c, iv - a

d) i - b, ii - a, iii - e, iv - c

20. In which of the following molecules π -electron density in ring is maximum?

 $\Delta H_{\rm C} \left({\rm CH}_4 \right) = -900 \, {\rm kJ} \, {\rm mol}$

 $\Delta \mathrm{H}_{\mathrm{C}}\left(\mathrm{C}_{2}\mathrm{H}_{4}
ight) = -1400 \ \mathrm{kJ \ mol}^{-1}.$

[4]