#### Solution

#### CHEMISTRY

#### JEE main - Chemistry

#### **CHEMISTRY (Section-A)**

1.

**(c)** 32

#### Explanation:

The number of electrons in the orbitals of sub-shell of n = 4 are 4s (2), 4p (6), 4d (10), 4f (14), total 32 electrons.

2.

**(b)**  $1s^2 2s^2 2p^6 3s^1$ 

#### **Explanation:**

Ionization enthalpy represents the energy required to remove an electron from an isolated gaseous atom in its ground state. The larger the atomic size, the smaller will be the value of ionization enthalpy of an element.

Hence, the atom with the electronic configuration  $1s^2 2s^2 2p^6 3s^1$  will have the lowest ionization enthalpy.

#### 3.

(d)  $K_p = K_c$ Explanation:  $\Delta n = (a + b) - (a + b) = 0$ 

#### 4.

# (b) $-\gamma rac{\Delta V}{V}$

Explanation:

For adiabatic process:  $PV^{\gamma} = constant$ Taking derivative

$$\mathrm{d} \mathrm{P} \mathrm{V}^{\gamma} + \gamma P V^{\gamma-1} \mathrm{d} \mathrm{V} = 0$$

$$egin{aligned} \mathrm{d} \mathrm{PV}^{\gamma} &= -\gamma P V^{\gamma-1} \, \, \mathrm{d} \mathrm{V} \ rac{\mathrm{d} P}{P} &= -\gamma rac{V^{\gamma-1}}{V^{\gamma}} \, \, \mathrm{d} \mathrm{V} \ rac{\Delta P}{P} &= -\gamma rac{\Delta V}{V} \end{aligned}$$

5. (a)  $NH_4Cl + NaOH \rightarrow H_2O + NH_3 + NaCl$ 

#### Explanation:

Ammonium salts with alkali given NH<sub>3</sub>. Rest all are redox reactions taking place in the backward direction.

#### 6.

(b) iv and i Explanation:

Neither there is an oxidant nor reductant or none of the species shows the change in oxidation no.

#### 7.

(c) Acetic acid **Explanation:** Organic acids dissolve lead in presence of oxygen  $Pb + 2CH_3COOH + \frac{1}{2}O_2 \rightarrow Pb(CH_3COO)_2 + H_2O$ 

#### 8. (a) O-H

Explanation:

NOTE: Heterolytic fission occurs when the two atoms differ considerably in their electronegativities.

O - H bond undergoes cleavage most readily because O and H differ markedly in their electronegativity and further oxygen being highly electronegative can accommodate the negative charge more effectively developed after the cleavage.

9. (a) II and IV



H 4n + 2 = 6 n = 1 Aromatic

10.

## **(b)** 269.07 K

Explanation:

For cane sugar ?  $T_f = 273.15 - 271.0 = 2.15 K$ 

Thus K<sub>f</sub> = (? T<sub>f</sub> x M<sub>B</sub> X W<sub>A</sub>)/( W<sub>B</sub> X1000) =2.15 X 342 X100/(5 X1000)

=14.71 K Kg mol-1

For glucose solution

? T<sub>f</sub> =K<sub>f</sub> xW<sub>B</sub> X1000/(M<sub>B</sub> XW<sub>A</sub>)

Therefore freezing point of v 5% glucose solution is =273.15 -4.085=269.07K

#### 11. **(a)**

| Solution of sucrose (w/w) | Molality (mol kg-1) | B.P. ( <sup>o</sup> C) |
|---------------------------|---------------------|------------------------|
| 10%                       | 0.32                | 100.167                |
| 20%                       | 0.73                | 100.380                |

#### **Explanation:**

10 % (w/w) solution contains 10 g sucrose and 90 g water  $\frac{10 \text{ gC}_{12}\text{H}_{22}\text{O}_{11}}{342 \text{ g/mol}} = 0.029 \text{ mol}$ 90 g H<sub>2</sub>O = 0.09 kg H<sub>2</sub>O Molality = m =  $\frac{0.029}{0.09}$  = 0.322 mol kg<sup>-1</sup> Elevation in b.p. ( $\Delta T_b$ ) = 0.52 × 0.322 = 0.167 K or 0.167°C Boiling point = 100 + 0.167 = 100.167°C Similarly, for 20% (w/w) solution, Molality = 0.73 mol kg<sup>-1</sup>

Boiling point = 100.380°C

```
12.
```

# (b) 9 : 1Explanation:9 : 1

13.

# (c) all of these

# Explanation:

These are characteristics of the first-order reaction.

When the rate of the reaction depends on the first power of the reactant concentration in the rate equation, then the reaction is said to follow first-order kinetics. The change in the concentration of only one reactant will affect the rate of the reaction. The

unit of the rate constant for the first-order reaction is s<sup>-1</sup>. This implies that the rate constant does not depend on the concentration of the reactant. The time taken for half the reactant to get reacted, the half lifetime of the first-order reaction is independent of the concentration. This means that the half-life period of the first-order reaction is constant.

14.

(c) basic copper carbonate and sulphate

#### Explanation:

Architectural structures built with copper corrode to give green verdigris (copper carbonate). It can be a mixture of carbonate and sulfate compounds in various amounts, depending upon environmental conditions such as sulfur-containing acid rain.

#### 15.

#### (c) [I<sub>3</sub>]<sup>-</sup>

#### Explanation:

 $I_3^-$ , XeF<sub>4</sub>, SF<sub>4</sub>, and  $ClO_3^-$  have 3, 2, 1, 1 lone pair of electrons respectively.

16.

### (b) All of these Explanation: All of these

17.

# (b) Cl CCl<sub>3</sub>

#### Explanation:

 $\ensuremath{\text{CCl}}_3$  is an electron-withdrawing group so meta product is a major product.

18.

(c) i - d, ii - e, iii - c, iv - a Explanation: i - d, ii - e, iii - c, iv - a



*∕* ОН

does not contain carbonyl so, no reaction with 2, 4-DNP. **OH** 

20.



#### **Explanation:**

 $\overset{{}_{\scriptstyle \bigcirc}}{O}$  is better donar than -NH<sub>2</sub> and -OCH<sub>3</sub>.

#### 21.64

Explanation:

In pure water, s = 8  $\times$  10<sup>-4</sup> K<sub>sp</sub> = s<sup>2</sup> = (8  $\times$  10<sup>-4</sup>)<sup>2</sup> = 64  $\times$  10<sup>-8</sup>

In 0.01 M H<sub>2</sub>SO<sub>4</sub>,

$${
m H}_2{
m SO}_4 \longrightarrow {
m 2H^+}_{0.02} + {
m SO}_4^{2-} \ {
m 0.01} \ {
m CdSO}_4 \longrightarrow {
m Cd}^{2+} + {
m SO}_4^{2-}$$

Total conc. of  $SO_4^{2-} = 0.01 + s$ K<sub>sp</sub> = s(s + 0.01)

$$K_{sp} = s.(0.01) \text{ (neglecting s}^2)$$

$$s = \frac{64 \times 10^{-8}}{0.01} = 64 \times 10^{-6}$$

22.49.0

Explanation:

Fe (Z = 26) 
$$\Rightarrow$$
 [Ar] 3d<sup>6</sup> 4s<sup>2</sup>

Number of unpaired electrons = 4

$$\therefore \mu = \sqrt{n (n + 2)}$$
 BM

 $\therefore \mu$  =  $\sqrt{4~(4~+~2)}$  =  $\sqrt{24}$  BM = 4.89  $\approx$  49  $\times$  10<sup>-1</sup> BM

23.200

Explanation:

Let M is the molar mass of the compound (g/mol) mass of compound = 0.01  $\times M_{\text{comp}}$ 

where  $M_{\text{comp.}}$  = molar mass of compound mass of carbon in the compound =  $0.01 \times M_{\text{comp.}} \times \frac{60}{100}$ 

**CHEMISTRY** (Section-B)

moles of carbon =  $\frac{0.01M_{\text{comp.}}}{12} \times \frac{60}{100}$ moles of CO<sub>2</sub> from combustion =  $\frac{4.4}{44}$ 

It should be equal to the moles of carbon in the compound.

$$\Rightarrow \frac{\frac{0.01 M_{\text{comp.}}}{12} \times \frac{60}{100} = \frac{4.4}{44}}{M_{\text{comp.}} = \frac{4.4}{44} \times \frac{100}{60} \times \frac{12}{0.01} = 200 \text{ g/mol} }$$

24.5

Explanation: 5

5

25.925

Explanation:

Let, Volume of  $C_2H_4$  is x litre  $\mathrm{C_2H_4} + \mathrm{3O_2} \rightarrow \mathrm{2CO_2} + \mathrm{2H_2O}$ x – Initial -2xFinal  $2O_2 \rightarrow CO_2 + 2H_2O$  $\mathrm{CH}_4+$ (16.8 - x)Initial \_ Final \_ (16.8 - x)Total volume of  $CO_2 = 2x + 16.8 - x$  $\Rightarrow$  28 = 16.8 + x x = 11.2 L Volume of  $C_2H_4 = 4.2$  L, Volume of  $CH_4$ = (16.8 - 11.2) L = 5.6 L <sup>n</sup>CH<sub>4</sub> =  $\frac{5.6}{22.4}$  = 0.25 mol; <sup>n</sup>C<sub>2</sub>H<sub>4</sub> =  $\frac{11.2}{22.4}$  = 0.5 mol ∴ Heat evolved = 0.25 × (-900) + 0.5 (-1400) = -925 kJ