

SATISH SCIENCE ACADEMY

**DHANORI PUNE-411015** 

## **CHEMISTRY**

## JEE main - Chemistry

Maximum Marks: 100

[4]

## Time Allowed: 1 hour General Instructions:

- All questions are compulsory.
- There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

## **CHEMISTRY** (Section-A)

1. H has two natural isotopes  $_{1}H^{1}$  and  $_{1}H^{2}$  and O has a molar mass of:has two isotopes  $O^{16}$  and  $O^{18}$ . Which of the **[4]** following molar mass of H<sub>2</sub>O will not be possible?

b) 19

d) 24

b) Bromine

d) Lithium

a) 22

- c) 20
- 2. Which substance is stored in contact with water to prevent it from reacting with air?

a) Mercury

c) Phosphorus

3. The ionisation constant of  $NH_4^+$  in water is 5.6 × 10<sup>-10</sup> at 25°C. The rate constant for the reaction of  $NH_4^+$  and [4] OH<sup>-</sup> to form NH<sub>3</sub> and H<sub>2</sub>O at 25°C is 3.4 × 10<sup>-10</sup> L mol<sup>-1</sup> s<sup>-1</sup>. The rate constant for proton transfer from water to NH<sub>3</sub> is:

| a) $6.07 \times 10^5  \mathrm{s}^{-1}$   |   | b) $1.07 \times 10^{-5}  \text{s}^{-1}$ |
|------------------------------------------|---|-----------------------------------------|
| c) $6.07 \times 10^{-10}  \text{s}^{-1}$ | Y | d) $6.07 \times 10^{10}  { m s}^{-1}$   |

4. A kettle containing 1 kg of water is heated open to atmosphere untill evaporation is complete. The work done [4] during this process is:

| a) 126.09 kJ | b) 172.28 kJ |
|--------------|--------------|
|--------------|--------------|

- c) 172.28 J d) 126.09 J
- 5. An acid type indicator, HIn differs in colour from its conjugate base (In<sup>-</sup>). The human, eye is sensitive to colour [4] differences only when the ratio [In-]/[HIn] is greater than 10 or smaller than 0.1. What should be the minimum change in the pH of the solution to observe a complete colour change ( $K_a = 1.0 \times 10^{-5}$ ):

| a) 4 | b) 6 |
|------|------|
| c) 2 | d) 1 |

6. In the balanced redox reaction for the disproportionation of bromine in the presence of a strong base, OH<sup>-</sup> [4]

| Relative $t_{rac{1}{2}}(s)$             |                                | 4                         | 2                                 | 1                 | 0.5                            |
|------------------------------------------|--------------------------------|---------------------------|-----------------------------------|-------------------|--------------------------------|
| p(mm Hg)                                 |                                | 50                        | 100                               | 200               | 400                            |
| A student has studied the deco           | omposition of a gas            | s AB <sub>3</sub> at 25°C | . He obtained                     | d the following o | data.                          |
| c) 1 M NaCl                              |                                | d) 1 M                    | La(NO <sub>3</sub> ) <sub>3</sub> |                   |                                |
| a) 1 M Ba(NO <sub>3</sub> ) <sub>2</sub> |                                | b) 1 M                    | Th(NO <sub>3</sub> ) <sub>4</sub> |                   |                                |
| The molecular conductivity and           | nd equivalent cond             | uctivity are sa           | me for the so                     | olution of:       |                                |
| c) > 76 cm of Hg                         |                                | d) < 76                   | 5 cm of Hg                        |                   |                                |
| a) 76 cm of Hg                           | Y                              | b) 76 n                   | nm of Hg                          |                   |                                |
| Vater will boil at 101.5°C at            | which of the follow            | ving pressure?            |                                   |                   |                                |
| c) 70%                                   | (N)                            | d) 80%                    | ,<br>o                            |                   |                                |
| a) 50%                                   |                                | b) 60%                    | 6                                 |                   |                                |
| Given: Molar mass of $A = 93$            | g mol <sup>-1</sup> . Molal de | pression cons             | tant of water                     | is 1.86K kg mo    | l <sup>-1</sup> ].             |
| ooint by 0.2°C. The percentag            | e association of so            | lute Ain water            | r, is                             |                   |                                |
| Solute A associates in water.            | When 0.7 g of solu             | te A is dissolv           | ved in 42.0 g                     | of water, it depr | resses the freezing            |
| c) Trans-2-butene                        |                                | d) Cis-                   | 2-butene                          | 1                 |                                |
| a) 1-butene                              |                                | b) All                    | of these                          |                   |                                |
| Which of the following is the            | major product whe              | en 1-butanol is           | s heated with                     | concentrated H    | <sub>2</sub> SO <sub>4</sub> ? |
| c) P                                     |                                | d) X                      | $\langle \rangle$                 | /                 |                                |
| a) Z                                     |                                | b) Y                      | X                                 | 7                 |                                |
|                                          |                                |                           | ~                                 |                   |                                |
| The abstraction of proton will           | be fastest in which            | n carbon in the           | e following c                     | ompound?          |                                |
| c) PbSO <sub>4</sub>                     |                                | d) PbH                    | ISO <sub>4</sub>                  |                   |                                |
| a) PbO                                   |                                | b) PbC                    | <b>)</b> <sub>2</sub>             |                   |                                |
| $1_2O_2$ on reaction with PDS gi         | ves:                           |                           |                                   |                   |                                |
| c) 5                                     |                                | d) 12                     |                                   |                   |                                |
|                                          |                                |                           |                                   |                   |                                |

14. Given 
$$E^{\circ}_{\mathrm{Cr}^{3+}/\mathrm{Cr}}$$
 = -0.74 V;  $E^{\circ}_{\mathrm{MnO}_{4}^{-}/\mathrm{Mn}^{2+}}$  = 1.51 V

 $E^{\circ}_{{
m CrO}_7^{2^-}/{
m Cr}^{3+}}$  = 1.33 V;  $E^{\circ}_{{
m Cl}/{
m Cl}^-}$  = 1.36 V

Based on the data given above, the strongest oxidising agent will be:

[4]

|     | a) Cl <sup>-</sup> b) $MnO_4^-$                                                                                                                                                                                                                                                                                      |                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     | c) <sub>Cr<sup>3+</sup></sub> d) <sub>Mn<sup>2+</sup></sub>                                                                                                                                                                                                                                                          |                   |
| 15. | Electron gain enthalpy with negative sign of fluorine is less than that of chlorine due to:                                                                                                                                                                                                                          | [4]               |
|     | a) Bigger size of 2p orbital of fluorine b) Smaller size of chlorine atom                                                                                                                                                                                                                                            |                   |
|     | c) High ionization enthalpy of fluorine d) Smaller size of fluorine atom                                                                                                                                                                                                                                             |                   |
| 16. | $\pi$ -bonding is not involved in:                                                                                                                                                                                                                                                                                   | [4]               |
|     | a) Grignard's reagent b) ferrocene                                                                                                                                                                                                                                                                                   |                   |
|     | c) Dibenzenechromium d) Zeise's salt                                                                                                                                                                                                                                                                                 |                   |
| 17. | Amongst the following, which one is a halogen exchange reaction?                                                                                                                                                                                                                                                     | [4]               |
|     | a) $R - Cl + Nal \xrightarrow{\Delta}$ b) $R - F + NaCl \xrightarrow{\Delta}$                                                                                                                                                                                                                                        |                   |
|     | c) $R - CH_2 - F + KBr \xrightarrow{\Delta} d$ d) $R - I + Nal \xrightarrow{\Delta}$                                                                                                                                                                                                                                 |                   |
| 18. | Aniline undergoes diazotization followed by hydrolysis and forms compound <b>X</b> , which after oxidation form pink colour compound <b>Y</b> . Compound <b>X</b> undergoes Kolbe's reaction and forms compound <b>Z</b> . Acylation proof compound <b>Z</b> is aspirin. Identify compounds X, Y and Z respectively. | ns a [4]<br>oduct |
|     | a) p-Nitrophenol, Salicylic acid,<br>Salicylaldehyde                                                                                                                                                                                                                                                                 |                   |
|     | c) Nitrobenzene, Phenol, Salicylaldehyde d) Phenol, Benzoquinone, Salicylic acid                                                                                                                                                                                                                                     |                   |
| 19. | Which one of the following structures is D-Glyceraldehyde?                                                                                                                                                                                                                                                           | [4]               |
|     | a) $H \rightarrow H \rightarrow H$ b) $H \rightarrow H$                                                                                                                                                                                                                                                              |                   |
|     | CHO<br>CHO<br>H - OH<br>CH <sub>2</sub> OH<br>H - OH<br>CH <sub>2</sub> OH<br>H - OH<br>CH <sub>2</sub> OH<br>H - OH<br>CH <sub>2</sub> OH<br>H - OH<br>CH <sub>2</sub> OH                                                                                                                                           |                   |
| 20. | The decreasing order of basicity of the following amines is:                                                                                                                                                                                                                                                         | [4]               |
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                |                   |
|     | a) $(C) > (A) > (B) > (D)$ b) $(B) > (C) > (D) > (A)$                                                                                                                                                                                                                                                                |                   |
|     | c) (C) > (B) > (A) > (D) d) (A) > (C) > (D) > (B)                                                                                                                                                                                                                                                                    |                   |
| 24  | CHEMISTRY (Section-B)                                                                                                                                                                                                                                                                                                |                   |
| 21. | At 298 K                                                                                                                                                                                                                                                                                                             | [4]               |
|     | $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g), K_1 = 4 \times 10^3$                                                                                                                                                                                                                                                  |                   |
|     | $N_2(g) + O_2(g) \rightleftharpoons 2NO(g), K_2 = 1.6 \times 10^{12}$                                                                                                                                                                                                                                                |                   |

3/4

Based on above equilibria, the equilibrium constant of the reaction,

 $2NH_3(g) + \frac{5}{2}O_2(g) \rightleftharpoons 2NO(g) + 3H_2O(g)$  is \_\_\_\_\_ × 10<sup>-33</sup> (Nearest integer)

- 22. Ge(Z = 32) in its ground state electronic configuration has x completely filled orbitals with m<sub>l</sub> = 0: The value of [4] x is \_\_\_\_\_.
- NaClO<sub>3</sub> is used, even in spacecrafts, to produce O<sub>2</sub>. The daily consumption of pure O<sub>2</sub> by a person is 492 L at 1 [4] atm, 300 K. How much amount of NaClO<sub>3</sub>, in grams, is required to produce O<sub>2</sub> for the daily consumption of a person at 1 atm, 300 K? \_\_\_\_\_.

 $NaClO_3(s) + Fe(s) \rightarrow O_2(g) + NaCl(s) + FeO(s) R = 0.082 L atm mol<sup>-1</sup> K<sup>-1</sup>$ 

24. Two elements A and B have following electronic configuration

 $A = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ 

 $B = 1s^2 2s^2 2p^6 3s^2 3p^3$ 

If expected compound formed by A and B is  $A_x B_y$  then sum of x and y is:

25. Consider the following cell reaction:

$$\mathrm{Cd}(\mathrm{s}) + \mathrm{Hg}_2\mathrm{SO}_4(\mathrm{~s}) + rac{9}{5}\mathrm{H}_2\mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{Cd}\mathrm{SO}_4 \cdot rac{9}{5}\mathrm{H}_2\mathrm{O}(\mathrm{s}) + 2\mathrm{Hg}(\mathrm{l})$$

The value of  $E_{\rm cell}^o$  4.315 V at 25°C. If  $\Delta H^\circ$  = -825.2 kJ mol<sup>-1</sup>, the standard entropy change  $\Delta S^o$  in J K<sup>-1</sup> is

\_\_\_\_\_. (Nearest integer)

[4]

[4]