

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

CHEMISTRY

JEE main - Chemistry

Time Allowed: 1 hour Maximum Marks: 100 **General Instructions:** All questions are compulsory. There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical. You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer. **CHEMISTRY** (Section-A) 1. Which of the following forms of hydrogen emits low energy β^- particles? [4] a) Deuterium ${}_{1}^{2}H$ b) proton H⁺ c) Tritium ³₁H d) Protium ${}^{1}_{1}H$ 2. Which of the following elements in considered as a metalloid? [4] a) Bi b) Sc d) Pb c) Te Which amongst the following is the strongest acid? 3. [4] b) CH(CN)₃ a) CHCl₃ c) CHI₃ d) CHBr₃ The intermolecular potential energy for the molecules A, B, C and D given below suggests that: 4. [4] Interatomic distance (pm) 100 150 0 -100 -200 Potential Energy -300 (kJ mol D -400 A - C-500 $-\mathbf{B}$ -600

a) D is more electronegative than other atoms

b) A-B has the stiffest bond

c) A-A has the largest bond enthalpy

d) A-D has the shortest bond length

5. How many litres of water must be added to 1 L of an aqueous solution of HCl with a pH of 1 to create an [4] aqueous solution with pH of 2?

	a) 9.0 L	b) 2.0 L	
	c) 0.1 L	d) 0.9 L	
6.	In order to oxidise a mixture of one mole of each of F	FeC_2O_4 , $Fe(C_2O_4)_3$, $FeSO_4$ and $Fe_2(SO_4)_3$ in acidic	[4]
	medium, the number of moles of KMnO ₄ required is:		
	a) 1	b) 1.5	
	c) 2	d) 3	
7.	The IUPAC name of the following compound is:		[4]
	CH ₃ O		
	C-OH		
	Br		
	a) 5-Bromo-3-methylcyclopentanoic acid	b) 3-Bromo-5-methylcyclopentanoic acid	
	c) 4-Bromo-2-methylcyclopentane carboxylic	d) 3-Bromo-5-methylcyclopentane carboxylic	
	acid	acid	
8.	Which one of the following cannot function as an oxi	dising agent?	[4]
	a) <u>I</u> -	b) S (s)	
	c) $Cr_2O_7^{2-}$	d) $NO_3^-(aq)$	
9.	Which of the following compounds will exhibit geom	netrical isomerism?	[4]
	a) 1-phenyl-2-butene	b) 2-phenyl-1 -butene	
	c) 3-phenyl-1-butene	d) 1, 1 -diphenyl-1 -propane	
10.	A solution at 20 °C is composed of 1.5 mol of benzer	he and 3.5 mol of toluene. If the vapour pressure of pure	[4]
	benzene and pure toluene at this temperature are 74.7	torr and 22.3 torr, respectively, then the total vapour	
	pressure of the solution and the benzene mole fraction	n in equilibrium with it will be, respectively:	
	a) 35.8 torr and 0.280	b) 38.0 torr and 0.589	
	c) 30.5 torr and 0.389	d) 30.5 torr and 0.480	
11.	What would be the molality of 20% (mass/mass) aqueous solution of KI? (Molar mass of KI = 166 g mol^{-1}) [4]		[4]
	a) 1.48	b) 1.08	
	c) 1.51	d) 1.35	
12.	For the given cell;		[4]
	$Cu(s) Cu^{2+}(C_1M) Cu^{2+}(C_2M) Cu(s)$		
	change in Gibbs energy (ΔG) is negative, if:		
	a) $C_1 = C_2$	b) $C_1 = 2C_2$	
	c) $C_2 = \frac{C_1}{\sqrt{2}}$	d) $C_2 = \sqrt{2}C_1$	
13.	In the reaction, $P + Q \rightarrow R + S$, the time taken for 75 P. The concentration of Q varies with reaction time as	% reaction of P is twice the time taken for 50% reaction of shown in the figure. The overall order of the reaction is	[4]

CONTACT:8830597066 | 9130946703

2/5

 $(Peroxyester) \xrightarrow{R' \to RCO'_2 + R'O'} + Carbonyl compound \uparrow \\ \xrightarrow{R \to RCO'_2 + R'O'} \xrightarrow{-CO_2} \xrightarrow{R' + X''} + Carbonyl \\ \xrightarrow{CO_2 + Carbonyl} \\ \xrightarrow{CO_2 + R'O'} \xrightarrow{-CO_2 + R'O'} \xrightarrow{R' + R'O'} + R'O'$

Column I	Column II
P. Pathway P	

20. An organic compound [A](C₄H₁₁N), shows optical activity and gives N₂ gas on treatment with HNO₂. The [4] compound [A] reacts with PhSO₂Cl producing a compound which is soluble in KOH. The structure of A is:

19.

21. Assume that the radius of the first Bohr orbit of hydrogen atom is 0.6 \mathring{A} . The radius of the third Bohr orbit of [4]

He⁺ is picometer. (Nearest Integer)

- 22. An organic compound undergoes first order decomposition. If the time taken for the 60% decomposition is 540 [4] s, then the time required for 90% decomposition will be is ______ s. (Nearest integer). Given: In 10 = 2.3; log 2 = 0.3
- 23. The sum of oxidation states of two silver ions in $[Ag(NH_3)_2] [Ag(CN)_2]$ complex is _____. [4]
- 24. If the value of Avogadro number is 6.023×10^{23} mol⁻¹ and the value of Boltzmann constant is 1.380×10^{-23} J [4] K⁻¹, then the number of significant digits in the calculated value of the universal gas constant is
- 25. The logarithm of equilibrium constant for the reaction $Pd^{2+}4Cl^{-} \Rightarrow PdCl_{4}^{2-}$ is _____ (Nearest integer) [4] Given: $\frac{2.303RT}{F} = 0.65 V$ $Pd^{2+} (aq) + 2e^{-} \Rightarrow pd(s); E^{0} = 0.83 V$ $PdCl_{4}^{2-} (aq) + 2e^{-} \Rightarrow Pd(s) + 4Cl^{-} (aq)$ $E^{0} = 0.65 V$