Solution

CHEMISTRY

JEE main - Chemistry

CHEMISTRY (Section-A)

1.

(b) 2:3 Explanation: $r = 0.529 \frac{n^2}{Z} \stackrel{o}{A}$ For Li²⁺, $(r_{Li^{2+}})_{n=4} - (r_{Li^{2+}})_{n=3} = \frac{0.529}{3} [4^2 - 3^2] = \Delta R_1$ For He⁺, $(r_{He^+})_{n=4} - (r_{He^+})_{n=3} = \frac{0.529}{2} [4^2 - 3^2] = \Delta R_2$ $\frac{\Delta R_1}{\Delta R_2} = \frac{2}{3}$

2. (a) $Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$

Explanation:

All are isoelectronic species, so more is the $\mathrm{Z}_{e\mathrm{f}\mathrm{f}}$ less will be the ionic size.

.: Correct order of ionic radii is

 $Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$

3.

(d) decreases by 3 units **Explanation:** $\Delta [H^+] = 1000$ $\Delta pH = -\log \Delta [H^+] = -\log 10^3$ = -3; (-ve) sign indicates decrease in pH.

4.

(c)
$$C_p \ln \left[\frac{(T_1+T_2)^2}{4T_1T_2} \right]$$

Explanation:

At the thermal equilibrium, final temperature $T_{f} = \frac{T_{1} + T_{2}}{2}$ \Rightarrow for the 1st block, $\triangle S_{I} = C_{p} \ln \frac{T_{f}}{T_{1}}$ \Rightarrow for the 2nd block, $\triangle S_{II} = C_{p} \ln \frac{T_{f}}{T_{2}}$ When brought in contact with each other, $\triangle S = \triangle S_{I} + \triangle S_{II} = C_{p} \ln \frac{T_{f}}{T_{1}} + C_{p} \ln \frac{T_{f}}{T_{2}}$ $= C_{p} \ln \left(\frac{T_{f}}{T_{1}} \times \frac{T_{f}}{T_{2}}\right) = C_{p} \ln \left[\frac{T_{f}^{2}}{T_{1}T_{2}}\right]$ $= C_{p} \ln \left[\frac{\left(\frac{T_{1}+T_{2}}{2}\right)^{2}}{T_{1}T_{2}}\right] = C_{p} \ln \left[\frac{(T_{1}+T_{2})^{2}}{4T_{1}T_{2}}\right]$

5.

(b) 9.6 Explanation: Given at 330 K, $K_w = 10^{-13.6}$ $pK_w = pH + pOH \Rightarrow 13.6 = pH + pOH$ $pOH = -log 10^{-4} \Rightarrow pOH = 4$ $\therefore pH = 13.6 - 4 = 9.6$

6.

Explanation:

NaCl and KCI are strong electrolytes. So, the study of their molar conductances (λ_m) can be experimentally verified by Debye-Huckel Onsagar equation,

 $\Lambda^c_{
m m}=\Lambda^0_{
m m}-B\sqrt{C}$

 $\Lambda^c_{
m m}$ = molar conductance at concentration.

 Λ_m^0 = molar conductance at infinite dilution, i.e. $C \to 0$

B = Debye-Huckel Onsagar constant.

For (both NaCl and KCI) a strong binary electrolyte like AB, the nature of the plot of $\Lambda_{\rm m} v s \sqrt{C}$ will be

Size of $\operatorname{Na}^{\oplus}$ is being smaller than \mathbf{K}^{\oplus} and $\operatorname{Na}^{\oplus}$ will remain in the more hydrated state, i.e. larger sized in aqueous solution. As a result, ionic mobility as well as ionic conductance of $\operatorname{Na}^{\oplus}$ (or NaCl as $\operatorname{Cl}^{\ominus}$ is common to NaCl and KCl) will be lower than \mathbf{K}^{\oplus} (or KCl). Thus, the plot of $\Lambda_{\mathrm{m}} vs\sqrt{C}$ for NaCl and KCl is as follows:

7. **(a)** O5-C6

Explanation:

The lone pair of electrons on O2 is involved in resonance with C = C. Hence O2 will not be protonated.

The lone pair of electrons on O5 is not involved in resonance with C = C. Hence, O5 will be. protonated. Chloride ion will then attack least substituted C atom (C6).

8. **(a)** CrO₂Cl₂

Explanation:

Let x be the oxidation state of Mn in MnO_4^- .

Since the overall charge on the complex is -1, the sum of oxidation states of all elements in it should be equal to -1. Therefore, x + 4(-2) = -1

Hence, the oxidation state of Mn in MnO_4^- is +7.

Similarly,

The oxidation state of Cr in $[Cr(CN)_6]_3^-$, Ni in NiF_6^{6-} and Cr in CrO_2Cl_2 is +3, +4 and +6 respectively.

Hence, the species with an atom in +6 oxidation state is CrO_2Cl_2 .

9.

(b) C₆H₅CHO

Explanation:

Toluene undergoes oxidation with $KMnO_4$, forms benzoic acid. In this conversion, alkyl part of toluene converts into carboxylic group. Further, benzoic acid reacts with thionyl chloride ($SOCl_2$) to give benzoyl chloride which upon reduction with H_2/Pd or $BaSO_4$ forms benzaldehyde (Rosenmund reduction) The conversion looks like,

10.

(b) 3A Explanation:

Given, Freezing point of 4% aqueous solution of X.

= Freezing point of 12% aqueous solution of Y

or
$$(\Delta T_f)_X = (\Delta T_f)_Y$$
 $\therefore \Delta T_f = T_f^{\circ} - T_f$

$$K_f \times m_X = K_f m_Y$$

where, m_x and m_Y are molality of X and Y, respectively.

or
$$m_X = m_Y$$

Now, molality =
$$\frac{\text{Number of moles of solute } (n)}{\text{Mass of solvent } (\text{in kg})}$$
$$n = \frac{\text{Weight}}{M_{\text{Molecular mass}}}$$
$$\frac{w_X}{M_X \times (w_{\text{solvent}})_1} = \frac{w_Y}{M_Y \times (w_{\text{solvent}})_2}$$
Given, $w_X = 4$ and $w_{(\text{isolvent})_1} = 96$
 $w_Y = 12$ and $w_{(\text{solvent})_2} = 88$
 $M_X = A$
 $\therefore \quad \frac{4 \times 1000}{M_X \times 96} = \frac{12 \times 1000}{M_Y \times 88}$
Thus, $M_Y = \frac{12 \times 1000 \times M_X \times 96}{4 \times 1000 \times 88}$
$$= \frac{96 \times 12}{4 \times 88} \times A = 3.27A \approx 3A$$

11.

(d) 150 g Explanation: Molar mass of octane =114 g/mol

From the lowering of vapour pressure we have,

$$\frac{\Delta P}{P} = \frac{\frac{W_2}{M_2}}{\frac{W_2}{M_2} + \frac{W_1}{M_1}}; \frac{75}{100} = \frac{\frac{W_2}{50 \text{ g/mol}}}{\frac{W_2}{50 \text{ g/mol}} + \frac{114 \text{ g}}{114 \text{ g/mol}}}$$
$$\Rightarrow W_2 = 150 \text{ g}$$

Explanation:

 $C_6H_5COOH + NaOH \longrightarrow C_6H_5COONa + H_2O$ (SB) (WA)

$$V_{NaOH}$$

From (A) \rightarrow (B); Free H⁺ ions are replaced by Na^{\oplus} which decreases conductance.

From (B) \rightarrow (C); Un-dissociated benzoic acid reacts with NaOH and forms salt which increases ions & conductance increases. From (C) \rightarrow (D); After equivalence point at (3), NaOH added further increases Na^{\oplus} and OH^{\oplus} ions which further increases the conductance.

13. (a) $E_f = 80 \text{ kJ/mol}$; $E_b = 120 \text{ KJ/mol}$

Explanation:

 $A(g) \rightleftharpoons B(g) \Delta H = -40 \text{ kJ}$ If activation energy of the reaction = xsince, $\frac{\mathrm{E}_{\mathrm{f}}}{\mathrm{E}_{\mathrm{b}}} = \frac{2}{3}$, therefore, $E_{f} = \frac{2x}{5}$ and $E_{b} = \frac{3x}{5}$ $E_{b} - E_{f} = -\Delta H = +40 \Rightarrow \frac{3x}{5} - \frac{2x}{5} = 40 \Rightarrow x = 200$ Therefore,
$$\begin{split} \mathbf{E}_{b} &= \frac{3x}{5} = \frac{3 \times 200}{5} = 120 \text{ kJ mol}^{-1} \\ \mathbf{E}_{f} &= \frac{2x}{5} = \frac{2 \times 200}{5} = 80 \text{ kJ mol}^{-1} \end{split}$$

14.

(d) -384

Explanation: $\Delta G^\circ = -nFE^\circ_{
m cell}$ = -2 × (96000) × 2V = - 384000 J/mol = -384 kJ/mol

15. (a) less than 300 K

Explanation:

At room temperature, water is liquid and has boiling point 373 K due to hydrogen bonding. Whereas H₂S is a gas and it has no hydrogen bonding. Hence the boiling point of H₂S is less than 300 K (boiling point of H₂S is -60°C).

16.

(d) $C_2 O_4^{2-}$, ethylene diammine, $H_2 O$

Explanation:

Ambidentate ligand are the ligand which has two different donor atoms. For example NO_2^- and NCS^-

17.

(d) 2-Methyl prop-1-ene

Explanation:

We have been given a bulky base, hence elimination will take place & not substitution.

CHEMISTRY (Section-B)

21.6

Explanation:

d-broglie wave-length of electron:

$$\lambda_{e} = \frac{h}{\sqrt{2m(KE)}} \{ \because e^{-is accelerated from rest} \Rightarrow KE = q \times V \}$$
$$\lambda = \frac{h}{\sqrt{2mqV}} = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 16 \times 10^{-19} \times 9.1 \times 10^{-31} \times 40 \times 10^{3}}}$$
$$= 0.614 \times 10^{-11} \text{ m} = 6.14 \times 10^{-12} \text{ m}$$

22.623.0

Explanation:

For first order section

$$\begin{split} t &= \frac{2.303}{k} log \frac{[A]_0}{[A]_t} = \frac{2.303}{2.011 \times 10^{-3}} log \frac{7}{2} \\ &= \frac{2.303 \times 0.544}{2.011 \times 10^{-3}} = 622.989 \approx 623 \end{split}$$

23.1.0

Explanation:

Spin magnetic moment of $[\mathrm{Cr}(\mathrm{CN})_6]^{3\text{-}} \left(t_{2g}^3 \ e_g^0
ight)$

 $\mu_1 = \sqrt{3(3+2)} = \sqrt{15}$ BM (Considering it as an outer orbital complex)

Spin magnetic moment of $[Cr(H_2O)_6]^{3+} (t_{2g}^3 e_8^0)$

$$\mu_2 = \sqrt{3(3+2)} = \sqrt{15}$$
 BM
 $\frac{\mu_1}{\mu_2} = \frac{\sqrt{15}}{\sqrt{15}} = 1$

24.46

Explanation:

```
Mole of CO_2 = Moles of C
```

```
= \frac{\text{Weight of CO}_2}{\text{Molar mass of CO}_2} = \frac{0.793}{44}
Weight of 'C' = moles × molar mass of carbon
= \frac{0.793}{44} \times 12 = 0.216 \text{ g}
1H<sub>2</sub>O \longrightarrow [2\text{H} + \text{O}]
1 mole of H<sub>2</sub>O = 2 moles of hydrogen.
Moles of H<sub>2</sub>O = \frac{\text{Weight}}{\text{Molar mass}} = \frac{0.442}{18}
Moles of 'H' = \frac{0.442}{18} \times 2
Weight of 'H' = \frac{0.442}{18} \times 2 \times 1 = 0.049 \text{ g}
```

Weight of 'H'= $\frac{0.442}{18} \times 2 \times 1 = 0.049$ g \therefore Weight of 'O' = 0.492 - 0.216 - 0.049 = 0.227 g % of 'O' = $\frac{0.227}{0.492} \times 100 = 46.13\%$

25.144

Explanation:

 $\begin{aligned} &2\mathrm{Cu}^{+}\left(\mathrm{aq}\right)\rightleftharpoons\mathrm{Cu}\left(\mathrm{s}\right)+\mathrm{Cu}^{2+}\left(\mathrm{aq}\right)\\ &\mathrm{E}_{\mathrm{cell}}^{\circ}=\mathrm{E}_{\mathrm{Cu}^{+}/\mathrm{Cu}}^{0}-\mathrm{E}_{\mathrm{Cu}^{2+}/\mathrm{Cu}^{+}}^{0}=0.52\text{ - }0.16\text{ = }0.36\mathrm{V}\\ &E_{\mathrm{cell}}^{o}=\frac{RT}{nF}\mathrm{ln}\,K_{eq}\\ &\Rightarrow0.36=\frac{0.025}{1}\mathrm{ln}\,\mathrm{K}\\ &\Rightarrow\mathrm{In}\,\mathrm{K}=14.4=144\times10^{-1}\end{aligned}$