

SATISH INTERNATIONAL SCHOOL

BHAIRAVNAGAR PUNE-411015 8830597066

CHEMISTRY

JEE main - Chemistry

Time Allowed: 1 hour Maximum Marks: 100

General Instructions:

- All questions are compulsory.
- There are 25 questions where the first 20 questions are MCQs and the next 5 are numerical.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

CHEMISTRY (Section-A)

- 1. An electronic transition from excited state to ground state in one or more steps emits 10 lines. The number of lines falling in UV spectrum are:
 - a) 5

b) 6

c) 4

- d) 3
- 2. The correct order of basic nature is:

[4]

- A. $B_2O_3 < Al_2O_3 < ln_2O_3 < Tl_2O$
- B. $B_2O_3 > Al_2O_3 > ln_2O_3 > Tl_2O$
- C. $B_2O_3 < Tl_2O < Al_2O_3 < ln_2O_3$
- D. $B_2O_3 < ln_2O_3 < Tl_2O < Al_2O_3$
 - a) B only

b) D only

c) A only

- d) C only
- 3. An aqueous solution contains 0.10 M H_2S and 0.20 M HCl. If the equilibrium constants for the formation of H [4] S^- from H_2S is 1.0×10^{-7} and that of S^{2-} from HS^- ions is 1.2×10^{-13} then the concentration of S^{2-} ions in aqueous solution is:
 - a) 6×10^{-21}

b) 5×10^{-8}

c) 3×10^{-20}

- d) 5×10^{-19}
- 4. Which of the following statements is correct?

[4]

- i. The presence of reacting species in a covered beaker is an example of open system.
- ii. There is an exchange of energy as well as matter between the system and the surroundings in a closed system.
- iii. The presence of reactants in a closed vessel made up of copper is an example of a closed system.
- iv. The presence of reactants in a thermos flask or any other closed insulated vessel is an example of a closed system.

	a) Option (1)	b) Option (II)	
	c) (iv)	d) Option (iii)	
5.	The pH of pure water at a given temperature is 6.8. If	100 mL of 0.02 M HCl and 100 mL of 0.02 M $\mathrm{NH_4OH}$ are	[4]
	mixed at that temperature, the pH of mixture will be:	$[K_a \text{ of } (NH_4^+) = 10^{-8}]$	
	a) 4.1	b) 4.8	
	c) 5.4	d) 6.2	
6.	Which process is not involved in the reaction? $KO_2 + H_2O + CO_2 \longrightarrow KHCO_3 + O_2$		[4]
	a) Hydrolysis	b) Non redox change	
	c) Acid-base reaction	d) Auto-redox	
7.	Litharge is chemically:	, ()	[4]
	a) PbO	b) Pb ₃ O ₄	
	c) Pb(CH ₃ COO) ₂	d) PbO ₂	
8.	Arrange the following in increasing order of heat of h	ydrogenation :	[4]
	$\bigcap_{(P)} \qquad \bigcap_{(Q)} \qquad \bigcap_{(R)} \qquad \bigcap_{(S)}$		
	a) P > Q > R > S	b) Q > P > S > R	
	c) Q > S > R > P	d) $R > S > Q > P$	
9.	In the presence of peroxide, hydrogen chloride and hy	rdrogen iodide do not give anti-Markownikoff's addition to	[4]
	alkenes because		
	a) One of the steps is endothermic in both the	b) Both are highly ionic	
	cases) ^v	
	c) All the steps are exothermic in both the	d) One is oxidising and the other is reducing	
	cases		
10.	•	750 mm of Hg at 373 K. The mole fraction of solute is:	[4]
	a) $\frac{1}{35}$	b) $\frac{1}{10}$	
	c) $\frac{1}{76}$	d) $\frac{1}{7.6}$	
11.	If molality of the dilute solution is doubled, the value	of molal depression constant (K_f) will be:	[4]
	a) doubled	b) tripled	
	c) unchanged	d) halved	
12.	If E_1°,E_2° and E_3° are the standard electrode potentials find the CORRECT relation.	for $X^{2+} X$, $X^{3+} X^{2+}$, and $X^{3+} X$ electrodes, respectively,	[4]
	a) $2\mathrm{E}_3^\circ$ = $2\mathrm{E}_2^\circ$ - E_1°	b) $3E_3^{\circ} = E_2^{\circ} + 2E_1^{\circ}$	
	c) $E_3^{\circ} = 2E_2^{\circ} - 3E_1^{\circ}$	d) $4E_3^{\circ} = 3E_2^{\circ} - 2E_1^{\circ}$	
13.	Which of the following statements is not correct about	ut order of a reaction?	[4]

- a) The order of a reaction is always equal to the sum of the stoichiometric coefficients of reactants in the balanced chemical equation for a reaction.
- b) Order of a reaction is experimentally determined quantity.
- c) The order of a reaction can be a fractional number.
- d) The order of a reaction is the sum of the powers of molar concentration of the reactants in the rate law expression.
- 14. The standard e.m.f. of a galvanic cell involving cell reaction with n = 2 is found to be 0.295V at 25°C. The equilibrium constant of the reaction would be: (Given $F = 96500 \text{ C mol}^{-1}$, $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)
 - a) 1.0×10^2

b) 2.0×10^{11}

c) 1.0×10^{10}

- d) 4.0×10^{12}
- 15. The strongest oxidizing agent is _

a) F₂

b) Cl₂

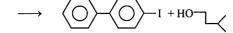
c) Br₂

- d) I₂
- 16. A co-ordination complex has the formula PtCl₄2KCl. Electrical conductance measurement indicate the presence [4] of three ion in one formula unit. Treatment with AgNO3 produces no precipitate of AgCl. What is the coordination number of Pt in this complex?
 - a) 5

b) 3

c) 6

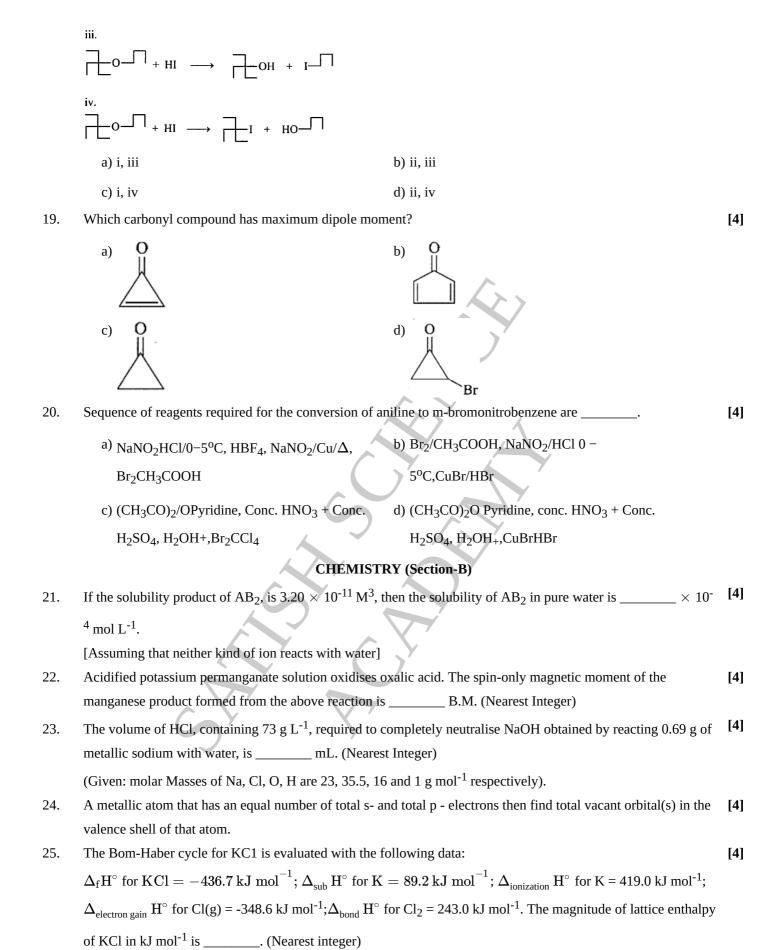
17.


- d)
- CH₃

[4]

The major product of the above reaction is:

 CH_3 a)


- d)
- 18. Find the incorrect reactions from the following.
- - i.

- ii.

[4]

[4]

