

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

PHYSICS

Class 12 - Physics

Time Allowed: 3 hours

Maximum Marks: 70

General Instructions:

The question paper is divided into **four sections**:

1. Section A

- Q. No. 1 contains **Ten multiple choice type** of questions carrying **One mark** each.
- Q. No. 2 contains **Eight very short answer type** of questions carrying **One mark** each.

2. Section B

• Q. No. 3 to Q. No. 14 contain **Twelve short answer type** of questions carrying **Two marks** each. (Attempt any Eight).

3. Section C

• Q. No. 15 to Q. No. 26 contain **Twelve short answer type** of questions carrying **Three marks** each. (Attempt any Eight).

4. Section D

- Q. No. 27 to Q. No. 31 contain **Five long answer type** of questions carrying **Four marks** each. (Attempt any Three).
- 5. Use of the log table is allowed. Use of calculator is not allowed.
- 6. Figures to the right indicate full marks.
- 7. For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet. e.g.,
 (a)...../(b)...../(c)...../(d) No marks(s) shall be given, if <u>ONLY</u> the correct answer or the alphabet of the correct answer is written. Only the first attempt will be considered for evaluation.

Section A

1.	Select and write the correct answers for the following multiple choice type of questions:		[10]	
	(a)	(a) The momentum of a photon of de Broglie wavelength $5000\overset{o}{A}$ is [Planck's constant = $6.63 imes 10^{-34} J.s.$]		[1]
		a) $1.326 imes 10^{-28} \; kg - m/s$	b) $7.54 imes 10^{-28} \; kg - m/s$	
		c) $1.326 imes 10^{-27} \; kg - m/s$	d) $7.54 imes 10^{-27} \; kg - m/s$	
	(b)	b) In a cyclic process, if ΔU = internal energy, W = work done, Q = Heat supplied then		[1]
		a) $Q=0$	b) $W=0$	

	c) $W=Q$	d) $\Delta U=Q$	
(c)	A pure semiconductor is known as		[1]
	a) extrinsic semiconductor	b) p-type semiconductor	
	c) n-type semiconductor	d) intrinsic semiconductor	
(d)	A ray of light passes from vacuum to a medium be twice the angle of refraction. The angle of inc	of refractive index μ . Angle of incidence is found to eidence is given by	[1]
	a) $2\sin^{-1}(\frac{\mu}{2})$	b) $\cos^{-1}(\frac{\mu}{2})$	
	c) $2\cos^{-1}(\frac{\mu}{2})$	d) $\cos^{-1}(\mu)$	
(e)	Phase difference between a node and an adjacent	t antinode in a stationary wave is	[1]
	a) πrad		
		b) $\frac{\pi}{2}rad$ d) $\frac{3\pi}{4}rad$	
(f)	c) $\frac{\pi}{4}rad$		[4]
(f)	In which of the following substances, surface ter	ision increases with increase in temperature?	[1]
	a) Molten copper	b) Iron	
	c) Copper	d) Molten iron	
(g)	The energy of an electron in nth Bohr orbit is pro	oportional to	[1]
	a) n^2	b) $\frac{1}{n^2}$	
	c) $\frac{1}{n}$	d) n	
(h)		vater is placed on two dissimilar magnetic poles, then	[1]
	water		
	a) shows a depression in the middle.	b) shows an elevation in the middle.	
	c) evaporates immediately.	d) surface remains horizontal.	
(i)	The specific heat capacity of water is		[1]
(1)		7 -	[1]
	a) 8 <i>R</i>	b) $\frac{7}{8}R$	
	c) $\frac{9}{7}R$	d) 9 <i>R</i>	
(j)	Avalanche breakdown in a zener diode takes plac	ce due to	[1]
	a) accelerated minority charge carrier	b) light energy	
	c) thermal energy	d) magnetic field	
nswe	er the following questions:		[8]
(a)	Is it always necessary to use red light to get phot	oelectric effect?	[1]
(b)	Define the term damped oscillations .		[1]
(c)	What is the average value of alternating current over a complete cycle?		[1]
(d)	Define potential gradient of the potentiometer w	ire.	[1]
(e)	Define U.C.M.		[1]
	Name the forces acting on a body executing non-		
(f)	Categorize the following into polar and non-pola	ar dielectrics:	[1]

2.

	b. CO ₂		
	(g) What is the value of force on a closed circuit in a magnetic	field?	[1]
	(h) State the formula for the Bohr magneton.		[1]
	Section B		
	Attempt any 8 questions		
3.	Define surface tension and surface energy.		[2]
4.	Draw a neat and labelled diagram of suspended coil type moving co	il galvanometer.	[2]
5.	Draw neat, labelled diagram showing different forces acting on a vehicle moving along a banked road.		[2]
6.	State Gauss' theorem in electrostatics. State the expression for electro	ic field intensity at a point outside an	[2]
	infinitely long charged conducting cylinder.		
7.	7. Define phase of S.H.M.		[2]
	Show variation of displacement, velocity and acceleration with phas	e for a particle performing linear S.H.M.	
	graphically, when it starts from extreme position.	7	
8.	Define:		[2]
	a. Isothermal process		
	b. Adiabatic process.	4	
9.	Define and state formulae for:		[2]
	i. Inductive reactance		
	ii. Capacitive reactance		
10.	Calculate the period of a particle performing linear S.H.M. with max	kimum speed of $0.08\ m/s$ and maximum	[2]
	acceleration of $0.32 \ m/s^2$.	- > ⁷	
11.	Explain the formation of stationary waves by analytical method. Sho	w that nodes and antinodes are equally	[2]
	spaced in a stationary wave.		
12.	The kinetic energy of nitrogen per unit mass at 300 K is $2.5 imes10^6$.	J/Kg. Find the kinetic energy of 4 kg	[2]
	oxygen at 600 K. [Molecular weight of nitrogen = 28, Molecular we	ight of oxygen = 32]	
13.	The combined resistance of a galvanometer of resistance 500Ω and i	its shunt is $21\Omega.$ Calculate the value of	[2]
	shunt.		
14.	The velocity of electron in the first Bohr orbit of radius 0.5 A.U. is 2	$2.24 imes 10^6~m/s.$ Calculate the period of	[2]
	revolution of electron in the same orbit.		
	Section C		
	Attempt any 8 questions		
15.	State the conditions necessary for obtaining sharp and steady interfe	-	[3]
16.	Draw neat, labelled diagram of a parallel plate capacitor with a diele	ctric slab between the plates.	[3]
17.	What is gyromagnetic ratio? Write the necessary expression.		[3]
18.	What is photoelectric effect?		[3]
	Define:		
	i. Stopping potential		
	ii. Photoelectric work function.		
19.	Explain how a moving coil galvanometer can be converted into volt	meter.	[3]
20.	Express equation of one dimensional simple harmonic progressive w	vave travelling in the direction of positive X-	[3]
	axis in 'two' different forms.		
21.	Explain, why the equivalent inductance of two coils connected in pa	rallel is less than the inductance of either of	[3]

the coils.

- 22. The equation of simple harmonic progressive wave is given by $y = 0.05 \sin \pi \left[20t \frac{x}{6} \right]$, where all quantities **[3]** are in S. I. units. Calculate the displacement of a particle at 5 m from origin and at the instant 0.1 second.
- In a biprism experiment the slit is illuminated by a light of wavelength 4800 A.U. The distance between slit and [3] biprism is 20 cm and the distance between biprism and eye piece is 80 cm. If the distance between virtual sources is 3 mm, determine the distance between the 5th bright band on side of the central band and 5th dark band on other side.
- 24. A coil has **n** turns, each of cross-sectional area 1.6 cm^2 . The axis of the coil is kept inclined at 30° with the direction of uniform magnetic field of induction 2 N/Am. The torque of 0.02 Nm is experienced by the coil, when a current of 1.25 A flows through each turn. Calculate n.
- 25. An alternating voltage is given by $e = 8 \sin 628.4t$. Find
 - i. peak value of e.m.f.
 - ii. frequency of e.m.f.
 - iii. instantaneous value of e.m.f. at time $t = 10 \ ms$.
- 26. Calculate the wavelength of the first two lines in Balmer series of hydrogen atom.

Section D

Attempt any 3 questions

27.	Define	Define surface energy of the liquid. Obtain the relation between the surface energy and surface tension.		
28.	Answer the following questions:			
	(a)	Distinguish between step-up and step-down transformer.	[2]	
	(b)	An aircraft of wing span of 60 m flies horizontally in earth's magnetic field of $6 imes 10^{-5}~T$ at a speed	[2]	
		of 500 m/s . Calculate the e.m.f. induced between the tips of wings of aircraft.		
29.	Answe	r the following questions:	[4]	
	(a)	What is a thermodynamic process? Give any two types of it.	[2]	
	(b)	104 J of work is done on certain volume of a gas. If the gas releases 125 kJ of heat, calculate the	[2]	
		change in internal energy of the gas.		
30.	Answer:			
	(a)	What is perfectly blackbody? Explain Ferry's blackbody.	[2]	
	(b)	Calculate the kinetic energy of 10 grams of Argon molecules at $127^\circ C.$	[2]	
		[Universal gas constant R = 8320 J/k mole K, Atomic weight of Argon = 40]		
31.	In a conical pendulum, a string of length 120 cm is fixed at rigid support and carries a mass of 150 g at its free		[4]	
	end. If the mass is revolved in a horizontal circle of radius 0.2 m around a vertical axis, calculate tension in the			
	string. $\left(g=9.8\ m/s^2 ight)$			

[3]

[3]