### Solution

### PHYSICS

### **Class 12 - Physics**

#### Section A

- 1. Select and write the correct answers for the following multiple choice type of questions:
  - (i) (c)  $1.326 \times 10^{-27} kg m/s$ Explanation: { Momentum:  $p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{5000 \times 10^{-10}}$  $= 1.326 \times 10^{-27} kg - m/s$
  - (ii) **(c)** W = Q

#### Explanation: {

For a cyclic process, the total change in the internal energy of a system is zero.

```
\therefore \Delta U = 0
```

According to the first law of thermodynamics,

 $Q = \Delta U + W$ 

$$\therefore Q = W$$

(iii) **(d)** intrinsic semiconductor

Explanation: {

intrinsic semiconductor

(iv) (c)  $2\cos^{-1}\left(\frac{\mu}{2}\right)$ 

```
Explanation: {

\mu = \frac{\sin i}{\sin r}
Given that, i = 2r

\therefore \mu = \frac{\sin 2r}{\sin r} = \frac{2 \sin r \cos r}{\sin r} = 2 \cos r
\therefore \cos r = \frac{\mu}{2} \Rightarrow r = \cos^{-1}(\frac{\mu}{2})
\therefore \frac{i}{2} = \cos^{-1}(\frac{\mu}{2}) \Rightarrow i = 2\cos^{-1}(\frac{\mu}{2})
```

(v) **(b)**  $\frac{\pi}{2}$  rad

## Explanation: {

Nodes and antinodes are formed alternately. Therefore, the distance between a node and an adjacent antinode is  $\frac{\lambda}{4}$ . From,  $\Delta \phi = \frac{2\pi}{3} \times \Delta x$ 

From, 
$$\Delta \phi = \frac{\lambda}{\lambda} \times \Delta f$$
  
 $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} = \frac{\pi}{2}ra$ 

(vi) (a) Molten copper Explanation: { Molten copper

Molten copper

- (vii) **(b)**  $\frac{1}{n^2}$ Explanation: { $\frac{1}{n^2}$
- (viii) (a) shows a depression in the middle.Explanation: {shows a depression in the middle.
- (ix) **(d)** 9*R* **Explanation:** { 9*R*
- (x) (a) accelerated minority charge carrier
   Explanation: {

   accelerated minority charge carrier
- 2. Answer the following questions:

- (i) No. Any light possessing sufficient energy to initiate the photoemission can be used to get photoelectric effect.
- (ii) Periodic oscillations of gradually decreasing amplitude are called damped harmonic oscillations.
- (iii)Average value of alternating current over a complete cycle is zero.
- (iv)Potential gradient is defined as potential difference per unit length of wire.
- (v) **Definition:** During circular motion, if the speed of the particle remains constant, it is called Uniform Circular Motion (UCM).

**Forces acting on the body executing nonuniform circular motion:** Centripetal force provided partly by the weight of the body performing circular motion and partly by the normal reaction.

(vi)H<sub>2</sub>O- polar dielectric

CO<sub>2</sub>- non-polar dielectric

(viiForce on a closed circuit in a magnetic field is zero.

(vii**F**)ormula for Bohr Magneton =  $\frac{ch}{4\pi m_a}$ 

## Section B

- 3. i. Surface tension is defined as the tangential force acting per unit length on both sides of an imaginary line drawn on the free surface of liquid.
  - ii. Surface energy:

The extra energy of the molecules on the surface layer of a liquid is called surface energy of the liquid.



6. i. **Gauss' law:** The flux of the net electric field through a closed surface equals the net charge enclosed by the surface divided by  $\varepsilon_0$ .

$$a \rightarrow -$$

$$\int E \, \cdot ds = rac{q}{arepsilon_0}$$

where q is the total charge within the surface.

ii. Expression for electric field intensity at a point outside an infinitely long charged conducting cylinder:

$$E = rac{\lambda}{2\pi k \varepsilon_0 r}$$

7. **Definition:** Phase in S.H.M. (or for any motion) is the state of oscillation.

Particle performing S.H.M., starting from the positive extreme position:

**Equations:** As the particle starts from the positive extreme position,  $\phi = \frac{\pi}{2}$ 

$$\therefore$$
 Phase,  $\theta = \omega t + \phi = \omega t + \frac{\pi}{2}$ 

$$\therefore$$
 Displacement,  $x = A \sin(\omega t + rac{\pi}{2}) = A \cos \omega t$ 

Velocity,  $v = \frac{dx}{dt} = \frac{d(A\cos\omega t)}{dt} = -A\omega \cdot \sin(\omega t)$ Acceleration,  $a = \frac{dv}{dt} = \frac{d[-A\omega\sin(\omega t)]}{dt}$  $= -A\omega^2\cos(\omega t)$ 

Table:

| (t) | 0               | T/4        | T/2              | 3T/4      | Т                | 5T/4       |
|-----|-----------------|------------|------------------|-----------|------------------|------------|
| (θ) | $\frac{\pi}{2}$ | π          | $\frac{3\pi}{2}$ | $2\pi$    | $\frac{5\pi}{2}$ | $3\pi$     |
| (x) | А               | 0          | -A               | 0         | А                | 0          |
| (v) | 0               | $-A\omega$ | 0                | $A\omega$ | 0                | $-A\omega$ |
| (a) | $-A\omega^2$    | 0          | $A\omega^2$      | 0         | $-A\omega^2$     | 0          |

Graph:



a. Variation of displacement with time

b. Variation of velocity with time

- c. Variation of acceleration with time
- 8. i. A process in which change in pressure and volume takes place at a constant temperature is called an isothermal process or isothermal change.
  - ii. Adiabatic process is a process during which there is no transfer of heat from or to the system.
- 9. i. Inductive reactance: The opposing nature of an inductor to the flow of alternating current is called inductive reactance.

Formula :  $X_L = \omega L = 2\pi f L$ .

- Where f = frequency of AC supply
- ii. **Capacitive reactance:** The capacitive reactance of a capacitor is defined as the ratio of r.m.s voltage (e.m.f) across the capacitor to the corresponding r.m.s current.

Formula : 
$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

10.  $v_{\max} = \omega A$  and  $a_{\max} = \omega^2 A$ 

$$\therefore \frac{a_{\max}}{v_{\max}} = \frac{\omega^2 A}{\omega A} = \omega$$
$$\therefore \frac{0.32}{0.08} = \frac{2\pi}{T}$$

$$\therefore T = \frac{\pi}{2} = \frac{3.142}{2} = 1.571 \ s$$

- 11. i. 1. Consider two simple harmonic progressive waves of equal amplitudes (a) and wavelength ( $\lambda$ ) propagating on a long uniform string in opposite directions.
  - 2. The equation of wave travelling along the X -axis in the positive direction is given by,

$$y_1 = a \sin \left[ 2 \pi \left( nt - rac{x}{\lambda} 
ight) 
ight]$$

The equation of wave travelling along the X -axis in the negative direction is given by,

$$y_2 = a \sin \left[ 2 \pi \left( n t + rac{x}{\lambda} 
ight) 
ight]$$

3. When these waves interfere, the resultant displacement of particles of string is given by the principle of superposition of waves as

$$egin{aligned} y &= y_1 + y_2 \ \therefore y &= a \sin \Big[ 2 \pi \left( nt - rac{x}{\lambda} 
ight) \Big] + a \sin \Big[ 2 \pi \left( nt + rac{x}{\lambda} 
ight) \Big] \end{aligned}$$

- 4. By using trigonometry formula,  $\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$   $\therefore y = 2a\sin(2\pi nt)\cos\frac{2\pi x}{\lambda}$   $y = 2a\cos\frac{2\pi x}{\lambda}\sin(2\pi nt)\dots(1)$ 5. Column is a constant of the second seco
- 5. Substituting  $2a \cos \frac{2\pi x}{\lambda} = A$  in equation (1),

 $y = A\sin(2\pi nt)$ 

$$\therefore y = A \sin \omega t \ \dots (\therefore \omega = 2\pi n)$$

This is the equation of a stationary wave which gives resultant displacement due to two simple harmonic progressive waves.

ii.



#### 14. Given:

 $r = 0.5\overset{\circ}{A} = 0.5 \times 10^{-10} \ m = 5 \times 10^{-11} \ m$ To find: Period of revolution (T) Formula:  $T = \frac{2\pi r}{v}$ Calculation: Using formula (i) we get,  $T = \frac{2 \times 3.14 \times 5 \times 10^{-11}}{2.24 \times 10^6}$  $= \frac{31.4}{2.24} \times 10^{-17}$  $= 14.02 \times 10^{-17}$  $\therefore T = 1.402 \times 10^{-16} \ s$ 

Period of revolution of electron in the first Bohr orbit is  $1.402 \times 10^{-16} s$ .

#### Section C

- 15. Conditions for obtaining sharp and steady interference pattern are:
  - i. The two sources of light must be coherent.
  - ii. The two sources of light must be monochromatic.
  - iii. The two interfering waves must have the same amplitude.
  - iv. The separation between the two slits (d) must be small in comparison to the distance between the plane containing the slits and the observing screen (D).
  - v. The two slits should be narrow.
  - vi. The two waves should be in the same state of polarization if polarized light is used for the experiment.



- 17. i. The ratio of magnetic dipole moment with angular momentum of revolving electron is called the gyromagnetic ratio. ii. Gyromagnetic ratio is given by,  $\frac{m_{otb}}{L} = \frac{e}{2m_e}$
- 18. The phenomenon of emission of electrons from a metal surface, when radiation of appropriate frequency is incident on it, is known as photoelectric effect.
  - i. If increasingly negative potentials were applied to the collector in experiment of photoelectric effect, the photocurrent decreases and for some typical value  $(-V_0)$ , photocurrent becomes zero. This value of  $V_0$  is termed as cut-off or stopping potential.
  - ii. The minimum amount of energy required to be provided to an electron to pull it out of the metal from the surface is called the work function of the metal.
- 19. i. To use a M.C.G as a voltmeter, a high resistance is connected in series with the M.C.G.
  - ii. A very high resistance X is connected in series with the galvanometer for this purpose as shown in figure.



iii. If V is the voltage to be measured, then

$$V = I_g X + I_g G$$
  
$$\therefore I_g X = V - I_g G$$

 $\therefore X = \frac{V}{I_q} - G \dots (1)$ 

where  $I_g$  is the current flowing through the galvanometer.

iv. If voltage V is  $n_v$  times voltage  $V_g$  (voltage across galvanometer) then,

 $V = n_v V_g = n_v (I_g G)$ Using this in equation (1),  $X = G (n_v - 1)$ .

20. i. Equation of simple harmonic progressive wave travelling along the positive X -direction is given by,

 $y(x,t) = A\sin(kx - \omega t)$ 

where, A = amplitude of the wave,

- $\omega =$  angular frequency,
- t = instant time,

k = wave number.

- ii. Different forms of equation of simple harmonic progressive wave:
  - a. Wave number,  $k = \frac{2\pi}{\lambda}$

$$\therefore y(x,t) = A \sin\left(\frac{2\pi x}{\lambda} - \omega t\right)$$
  
b. Angular velocity,  $\omega = 2\pi n$   
$$\therefore y(x,t) = A \sin\left(\frac{2\pi x}{\lambda} - 2\pi n t\right)$$
  
$$y(x,t) = A \sin 2\pi \left(\frac{x}{\lambda} - n t\right)$$
  
c. Frequency,  $n = \frac{1}{T}$   
$$y(x,t) = A \sin 2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)$$
  
d. Wave frequency,  $v = n\lambda = \frac{\lambda}{T}$   
$$y(x,t) = A \sin \frac{2\pi}{\lambda}(x - vt)$$

- 21. i. For parallel combination of two coils, the current through each parallel inductor is a fraction of the total current and the voltage across each parallel inductor is same.
  - ii. As a result, a change in total current will result in less voltage dropped across the parallel array than for any one of the individual inductors.
  - iii. There will be less voltage drop across parallel inductors for a given rate of change in current than for any of the individual inductors.
  - iv. Less voltage for the same rate of change in current results in less inductance.
  - v. Thus, the total inductance of two coils is less than the inductance of either coil.
- 22. Given:  $y = 0.05 \sin \pi (20t$

x = 5 m, t = 0.1 sTo find: Displacement (y) Formula:  $y = A \sin 2\pi \left(nt - \frac{x}{\lambda}\right)$ Calculation: Comparing with formula,  $y = 0.05 \sin 2\pi \left(10t - \frac{x}{12}\right)$  $= 0.05 \sin 2\pi \left(10 \times 0.1 - \frac{5}{12}\right)$  $= 0.05 \sin 2\pi \left(1 - \frac{5}{12}\right)$  $= 0.05 \sin 2\pi \times \frac{7}{12}$  $= 0.05 \sin \frac{7\pi}{6}$  $= 0.05 \left(\frac{-1}{2}\right)$ 

$$= -0.025 m$$

The displacement of the particle from origin is -0.025m.

23. Given:  $\lambda = 4800 \overset{o}{A} = 4.8 \times 10^{-7} \ m, \ \ d = 3 \ mm = 3 \times 10^{-3} \ m, \ \ D = 20 + 80 = 100 \ cm = 1 \ m$ 

To find: Distance between 5<sup>th</sup> bright band on one side and 5<sup>th</sup> dark band on the other side of the central bright band,  $(y_5 + y'_5)$  Formulae:

i. For  $n^{\text{th}}$  bright band,  $y_n = \frac{n\lambda D}{d}$ 

ii. For  $n^{\text{th}}$  dark band,  $y'_n = (2n-1)\frac{\lambda D}{2d}$ Calculation: From formula (i),  $y_5 = rac{5 \lambda D}{d} = rac{5 imes 4.8 imes 10^{-7} imes 1}{3 imes 10^{-3}} = 8 imes 10^{-4} \ m$ From formula (ii)  $y_5' = (2 imes 5 - 1) rac{\lambda D}{2\,d} = rac{9}{2} rac{\lambda D}{d} \; = rac{9}{2} imes rac{4.8 imes 10^{-7} imes 1}{3 imes 10^{-3}} = 7.2 imes 10^{-4} \; m$  $\therefore y_5 + y_5' = 8 imes 10^{-4} \ m + 7.2 imes 10^{-4} \ m = 15.2 imes 10^{-4} \ m$ The distance between  $5^{th}$  bright band on one side and  $5^{h}$  dark band on the other side of the central bright band is  $15.2 imes 10^{-4} m.$ 24. Given:  $A = 1.6~cm^2 = 1.6 \times 10^{-4}~m^2, ~~B = 2~N/Am, \tau = 0.02Nm, I = 1.25~Am$ Since the axis of the coil is kept inclined at  $30^{\circ}$  with the direction of uniform magnetic field,  $\theta = 90^{\circ} - 30^{\circ} = 60^{\circ}$ To find: Number of turns (n) Formula:  $\tau = nIAB\sin\theta$ Calculation: From formula  $n = \frac{\tau}{IAB\sin\theta} = \frac{0.02}{1.25 \times 1.6 \times 10^{-4} \times 2 \times \sin(60^{\circ})} = \frac{0.02}{1.25 \times 1.6 \times 10^{-4} \times 2 \times \left(\frac{\sqrt{3}}{2}\right)}$  $= \frac{0.02 \times 10^4}{1.25 \times 1.6 \times 1.732} = \frac{200}{2 \times 1.732} = \frac{1}{1.732} \times 100$ Using reciprocal table.  $\therefore n = 57.73 \approx 58$ Number of turns in coil are around 58. 25. The alternating voltage is given by,  $e = 8\sin 628.4t$ i. On comparing with  $e=e_0\sin\omega t$  , we get  $e_0=8$ ii.  $\omega = 628.4 rad/s$  $\therefore$  Frequency,  $f=rac{\omega}{2\pi}=rac{628.4}{2 imes 3.142}=100 Hz$ iii. At  $t=10~ms=10^{-2}~s$  ,  $e = 8 \sin(628.4 imes 10^{-2})$  $=8\sin\left(\frac{200\times\pi}{100}\right)$  $=8\sin(2\pi)$ = 0 V(i) The peak value of emf is 8 V (ii) The frequency of emf is 100 Hz. (iii) The instantaneous value of emf at t = 10rns is 0 V. 26. Given:  $R_H = 1.097 imes 10^7 \ m^{-1}$  , We know that, for Balmer series, n=2To find: i. Wavelength of first line of Balmer series ii. Wavelength of second line of Balmer series Formula: For Balmer series,  $\frac{1}{\lambda} = R_H \left( \frac{1}{2^2} - \frac{1}{m^2} \right)$ Calculation: i. For first line in Balmer series, m = 3.: From formula,  $rac{1}{\lambda} = 1.097 imes 10^7 \left( rac{1}{2^2} - rac{1}{3^2} 
ight) = 1.097 imes 10^7 imes \left( rac{5}{4 imes 9} 
ight) = 1.524 imes 10^6 \ m^{-1}$ Using reciprocal table,  $\lambda = 6.563 imes 10^{-7} \ m = 6563 {
m \AA}$ ii. For second line in Balmer series, m = 4: From formula  $rac{1}{\lambda} = 1.097 imes 10^7 \left( rac{1}{2^2} - rac{1}{4^2} 
ight) = 1.097 imes 10^7 imes \left( rac{12}{4 imes 16} 
ight) = 0.2057 imes 10^7 \ m^{-1}$ Using reciprocal table,  $\lambda = 4.862 imes 10^{-7} \ m = 4862 ec{A}$ 

- i. The wavelength of the first line of the Balmer series is  $6563 \mathring{A}$ .
- ii. The wavelength of the second line of the Balmer series is  $4862\dot{A}$ .

#### Section D

- 27. The extra energy of the molecules on the surface layer of a liquid is called surface energy of the liquid. Relation between surface tension and surface energy per unit area:
  - 1. Let *ABCD* be a rectangular frame of wire, fitted with a movable arm PQ.



- 2. The frame held in horizontal position is dipped into soap solution and taken out so that a soap film APQB is formed. Due to surface tension of soap solution, a force 'F' will act on each arm of the frame. Under the action of this force, the movable arm PQ moves towards AB.
- 3. Magnitude of force due to surface tension is,

$$F = 2 \ Tl \dots [: T = F/l]$$

(A factor of 2 appears because soap film has two surfaces which are in contact with wire.)

- 4. Let the wire PQ be pulled outwards through a small distance ' dx ' to the position P'Q', by applying an external force F' isothermally, which is equal and opposite to F. Work done by this force, dW = F'dx = 2T/dx.
- 5. But, 2ldx = dA = increase in area of two surfaces of film.

$$\therefore dW = TdA$$

- 6. This work done in stretching the film is stored in the area dA in the form of potential energy (surface energy).
  - $\therefore$  Surface energy, E = T dA

$$\therefore \frac{E}{dA} = T$$

- Hence, surface tension = surface energy per unit area.
- 7. Thus, surface tension is equal to the mechanical work done per unit surface area of the liquid, which is also called as surface energy.
- 28. Answer the following questions:

| (i) | Step-up transformer                                                                                             | Step-down transformer                                                                                          |  |
|-----|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|     | (1) The number of turns in its secondary is more than that in its primary $\left(N_S>N_P\right).$               | The number of turns in primary is greater than secondary $(N_{\rm P}>N_{\rm S}).$                              |  |
|     | (2) Alternating voltage across the ends of its secondary is more than that across its primary i.e., $e_S > e_P$ | Alternating voltage across the ends of the primary is<br>more than that across its secondary i.e., $e_P > e_S$ |  |
|     | (3) Transformer ratio K > 1.                                                                                    | Transformer ratio K < 1.                                                                                       |  |
|     | (4) Primary coil made of thick wire.                                                                            | Secondary coil made of thick wire.                                                                             |  |
|     | (5) Secondary coil is made of thin wire.                                                                        | Primary coil is made of thin wire.                                                                             |  |
|     | (6) Current through secondary is less than primary.                                                             | Current through primary is less than secondary.                                                                |  |

(ii) Given:  $l=60~m, B=6 imes 10^{-5}~T, v=500~m/s$ 

To find: Induced emf (e)

Formula: e = B/v

Calculation: From formula

$$e = 6 \times 10^{-5} \times 60 \times 500$$

$$=180000 imes 10^{-5}=1.8$$
 l

Induced emf between tips of wings is **1.8 V.** 

29. Answer the following questions:

# (i) **Thermodynamic process:** A process by which two or more of state variables of a system can be changed is called a thermodynamic process or a thermodynamic change.

Types of thermodynamic processes:

i. Quasi-static process

- ii. isothermal process
- iii. adiabatic process
- iv. isochoric process
- v. isobaric process
- vi. reversible process
- vii. irreversible process

viii. cyclic process

(Any two types)

(ii) Given: W = -104 J, Q = -125 kJ = -125000 J

To find: Change in internal energy ( $\Delta U$ ) Formula:  $\Delta U = |\mathbf{Q}| - |\mathbf{W}|$ 

Calculation: From formula,

 $\Delta U = |Q| - |W|$ 

 $\therefore \Delta U = (125000 - 104)J = 124896 J$ 

Change in internal energy is 124.896 kJ.

# 30. Answer:

(i) Definition: A body, which absorbs the entire radiant energy incident on it, is called an ideal or perfect blackbody. Ferry's perfectly blackbody consists of a double walled hollow sphere having tiny hole or aperture, through which radiant heat can enter.

(ii) Given: 
$$R = 8320 J/k$$
 mole  $K, M_0 = 40$ ,  
 $T = 127^{\circ}C = 127 + 273 = 400 K$   
To find: Kinetic energy (K.E)  
Formula:  $K \cdot E/kg = \frac{3}{2} \frac{RT}{M_0}$   
Calculation: From formula,  
 $K \cdot E/kg = \frac{3}{2} \times \frac{8320 \times 400}{40}$   
 $= 1.248 \times 10^5 J$   
 $\therefore$  K.E for 10 gram = 1248J of Argon  
The kinetic energy of 10 grams of Argon molecules at  $127^{\circ}C$  is 1248 J.

# 31. Given:

 $l = 120 \ cm = 1.2 \ m, r = 0.2 \ m$  $m = 150 \ g = 0.15 \ kg$ To find: Tension in the string (T). Formula: Tension,  $T = rac{mg}{\cos heta}$ 

Calculation:



By Pythagoras theorem,  $l^2 = r^2 + h^2$   $\therefore h^2 = (1.2)^2 - (0.2)^2 = 1.4$   $\therefore h = 1.183 m$ The weight of bob is balanced by vertical component of tension *T*.

 $\therefore T\cos\theta = mg$  ...(i)

From figure,

$$\cos \theta = \frac{h}{l^{2}}$$
  

$$\therefore \cos^{2} \theta = \frac{h^{2}}{l^{2}} = \frac{h^{2}}{r^{2} + h^{2}}$$
  

$$\cos \theta = \frac{h}{\sqrt{r^{2} + h^{2}}}$$
  

$$\therefore Substituting in formula,
$$T = \frac{mg\sqrt{r^{2} + h^{2}}}{n}$$
  

$$= mg\sqrt{\left(\frac{r}{h}\right)^{2} + 1}$$
  

$$= 0.15 \times 9.8 \times \sqrt{\frac{36}{35}} = 1.47 \times \frac{6}{\sqrt{35}}$$
  

$$= \operatorname{antilog}\left[\log(1.47) + \log(6) - \frac{1}{2}\log(35)\right]$$
  

$$= \operatorname{antilog}\left[0.1673 + 0.7781 - \frac{1}{2} \times 1.5440\right]$$
  

$$= \operatorname{antilog}\left[0.1734\right]$$
  

$$= 1.491 N$$
  
Tension in the string is **1.491 N**.$$