

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

PHYSICS

Class 12 - Physics

Time Allowed: 3 hours

Maximum Marks: 70

General Instructions:

The question paper is divided into **four sections**:

$1. \ \textbf{Section} \ \textbf{A}$

- Q. No. 1 contains **Ten multiple choice type** of questions carrying **One mark** each.
- Q. No. 2 contains **Eight very short answer type** of questions carrying **One mark** each.

2. Section B

• Q. No. 3 to Q. No. 14 contain **Twelve short answer type** of questions carrying **Two marks** each. (Attempt any Eight).

3. Section C

• Q. No. 15 to Q. No. 26 contain **Twelve short answer type** of questions carrying **Three marks** each. (Attempt any Eight).

4. Section D

- Q. No. 27 to Q. No. 31 contain **Five long answer type** of questions carrying **Four marks** each. (Attempt any Three).
- 5. Use of the log table is allowed. Use of calculator is not allowed.
- 6. Figures to the right indicate full marks.
- 7. For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet. e.g.,
 (a)...../(b)...../(c)...../(d) No marks(s) shall be given, if <u>ONLY</u> the correct answer or the alphabet of the correct answer is written. Only the first attempt will be considered for evaluation.

Section A

1. Select and write the correct answers for the following multiple choice type of questions: [10]

(a) The photoelectric threshold wavelength of certain metal is 3315 A.U. Then its work function is [1]

a) $9 \times 10^{-19} J$ b) $6 \times 10^{-19} J$ c) $7.286 \times 10^{-19} J$ d) $9.945 \times 10^{-19} J$

(b) A graph of pressure versus volume for an ideal gas for different processes is as shown. In the graph [1] curve OA represents _____.

	P			
	D			
	$(0, 0)$ V \rightarrow			
	a) isochoric process	b) adiabatic process		
	c) isothermal process	d) isobaric process		
(c)	Colour of light emitted by LED depends upon			
	a) its reverse bias	b) its forward bias		
	c) the band gap of the material of semiconductor	d) its size		
(d)	In the biprism experiment keeping the experime	ntal set up unchanged, the fringe width	[1]	
	a) remains unchanged with change in	b) increases with increase in wavelength.		
	wavelength.			
	c) decreases with increase in wavelength.	d) increases with decrease in wavelength.		
(e)	One beat means that the intensity of sound should	ld be	[1]	
	a) once maximum and once minimum	b) once maximum		
	c) once minimum	d) twice maximum and twice minimum		
(f)		nt of 2.5 cm at room temperature. If another glass	[1]	
	capillary tube having radius half that of the earlier tube is immersed in the same liquid, the rise of liquid in it will be			
	a) 1.25 cm	b) 5 cm		
	c) 2.5 cm	d) 10 cm		
(g)		adius of n^{th} Bohr orbit is 212 A.U. The value of ' n '	[1]	
	is			
	a) 20	b) 400		
	c) 12	d) 2		
(h)	Soft iron is used to make the core of transformer	because of its	[1]	
	a) high coercivity and high retentivity	b) high coercivity and low retentivity		
	c) low coercivity and high retentivity	d) low coercivity and low retentivity		
(i)	Two copper spheres of radii 6 cm and 12 cm res	pectively are suspended in an evacuated enclosure.	[1]	
	-	Each of them are at a temperature $15^\circ C$ above the surroundings. The ratio of their rate of loss of heat		
	is			
	a) 1 : 8	b) 1:4		
	c) 2 : 1	d) 8 : 1	[4]	
(j)	When a p-n-p transistor is operated in saturation	region, then its	[1]	

		 a) both base-emitter and base-collector junctions are reverse biased. 	 b) base-emitter junction is reverse biased and base-collector junction is forward 	
			biased.	
		c) base-emitter junction is forward biased	d) both base-emitter and base-collector	
		and base-collector junction is reverse	junctions are forward biased.	
		biased.		
2.	Answe	r the following questions:		[8]
	(a)	State Einstein's photoelectric equation.		[1]
	(b)	Define the term damped oscillations .		[1]
	(c)	State the conditions for current and impedance in	parallel resonance circuit.	[1]
	(d)	What is shunt?		[1]
	(e)	State and prove theorem of parallel axes about me	oment of inertia.	[1]
	(f)	State the formula for electric field intensity at a p	oint outside an infinitely long charged cylindrical	[1]
		conductor.		
	(g)	What is the value of force on a closed circuit in a	magnetic field?	[1]
	(h)	Define gyromagnetic ratio.		[1]
		Section	В	
		Attempt any 8	questions	
3.	Define	coefficient of viscosity. State its formula and S.I. u	nits.	[2]
4.	Draw a	neat and labelled diagram of suspended coil type r	noving coil galvanometer.	[2]
5.	Explain	n the concept of centripetal force,		[2]
6.	Define	capacitance of a capacitor and its S.I. unit.		[2]
7.		phase of S.H.M.		[2]
			with phase for a particle performing linear S.H.M.	
	0.1	cally, when it starts from extreme position.		
8.		re mechanical equilibrium and thermal equilibrium	*	[2]
9.			Sistor are connected in series to a $120~V, 50~HzAC$	[2]
		Calculate the resonant frequency.		
10.		ate the velocity of a particle performing S.H.M. after	er 1 second, if its displacement is given by	[2]
	x = 5	$\sin\left(\frac{\pi t}{3}\right)m.$		
11.	State tl	ne principle of superposition of waves.		[2]
12.	At wha	t temperature will average kinetic energy of gas be	exactly half of its value at N.T.P.?	[2]
13.	Resista	nce of a potentiometer wire is $0.1\Omega/cm.$ A cell of	e.m.f. 1.5 V is balanced at 300 cm on this	[2]
	potenti	ometer wire. Calculate the current and balancing le	ngth for another cell of e.m.f. $1.4 \mathrm{V}$ on the same	
	potenti	ometer wire.		
14.	Determ	nine the shortest wavelengths of Balmer and Pasche	en series. Given the limit for Lyman series is 912 $\overset{{}_\circ}{A}$.	[2]
		Section	C	
		Attempt any 8	questions	
15.	State th	ne conditions necessary for obtaining sharp and stea	ady interference pattern.	[3]
16.	Draw r	neat, labelled diagram of a parallel plate capacitor w	ith a dielectric slab between the plates.	[3]
17.	Define	magnetization. Write its SI unit and dimensions.		[3]
18.	What i	s photoelectric effect?		[3]

3/4

Define:

i. Stopping potential

ii. Photoelectric work function.

- 19.State any 'two' possible sources of errors in metrebridge experiment. How can they be minimised?[3]
- 20. State the points of comparison between progressive waves and stationary waves.
- 21. Explain, why the equivalent inductance of two coils connected in parallel is less than the inductance of either of **[3]** the coils.
- 22. A simple harmonic progressive wave is given by the equation $Y = 0.1 \sin 4\pi (50t 0.1x)$ in S.I. units. Find [3] the amplitude, frequency, wavelength and velocity of the wave.
- 23. Determine the change in wavelength of light during its passage from air to glass. If the refractive index of glass **[3]** with respect to air is 1.5 and the frequency of light is 3.5×10^{14} *Hz*, find the wave number of light in glass. [Velocity of light in air ($c = 3 \times 10^8$ m/s)]
- 24. A circular coil of 250 turns and diameter 18 cm carries a current of 12 A. What is the magnitude of magnetic [3] moment associated with the coil?

25. A 100Ω resistor is connected to a 220 V, 50 Hz supply. Calculate:

- i. r.m.s. value of current and
- ii. net power consumed over the full cycle
- 26. Disintegration rate of a radio-active sample is 10^{10} per hour at 20 hours from the start. It reduces to 5×10^9 per [3] hour after 30 hours. Calculate the decay constant.

Section D

Attempt any 3 questions

27.	Derive	an expression for terminal velocity of a spherical object falling under gravity through a viscous medium.	[4]	
28.	3. Answer the following questions:			
	(a)	Distinguish between step-up and step-down transformer.	[2]	
	(b)	An emf of 96.0 mV is induced in the windings of a coil when the current in a nearby coil is increasing	[2]	
		at the rate of $1.20~A/s$. What is the mutual inductance (M) of the coils?		
29.	Answe	r the following questions:	[4]	
	(a)	What is a thermodynamic process? Give any two types of it.	[2]	
	(b)	104 J of work is done on certain volume of a gas. If the gas releases 125 kJ of heat, calculate the	[2]	
		change in internal energy of the gas.		
30.	Answe	r:	[4]	
	(a)	What is perfectly black body?	[2]	
	(b)	The kinetic energy of nitrogen per unit mass at 300 K is $2.5 imes 10^6~J/Kg$. Find the kinetic energy of	[2]	
		4 kg oxygen at 600 K. [Molecular weight of nitrogen = 28, Molecular weight of oxygen = 32]		
31.	State and prove theorem of parallel axes.		[4]	

[3]

[3]