Solution

PHYSICS

MHT - CET - Physics

1.

(c) perpendicular to acceleration only once during its flight.

Explanation:

perpendicular to acceleration only once during its flight.

2.

(c) u_{vertical}

Explanation:

u_{vertical}

3. **(a)** (7.5, 7.5, 7.5)

Explanation:

(7.5, 7.5, 7.5)

4.

(c) 56%

Explanation:

56%

5. **(a)** $\frac{GMm}{6R}$

Explanation:

 $\frac{\text{GMm}}{6\text{R}}$

6.

(c)
$$(2)^{\frac{-2}{3}}$$
 R

Explanation:

$$(2)^{\frac{-2}{3}}$$
 R

7.

(c) degree rise in temperature.

Explanation:

degree rise in temperature.

8.

(d) large number of free electrons.

Explanation:

large number of free electrons.

9. (a) Polarisation

Explanation:

Polarisation

10.

(c) distribution of particles

Explanation:

distribution of particles

11.	(a) 0.1°
	Explanation:
	0.1°
12.	
	(d) D.D.V
	Explanation:
	D.D.V
13.	(a) 4.7 km/s
13.	Explanation:
	4.7 km/s
	4.7 KII/5
14.	425
	(b) F
	Explanation:
	F
15.	(a) option (b)
	Explanation:
	Number of free electrons for conduction is significant only in Si and Ge but small in C.
16.	
10.	(c) 10.47 rad/s
	Explanation:
	10.47 rad/s
	10.47 Iddis
17.	M^2
	(b) $\frac{Ml^2\omega}{3}$
	Explanation:
	$\frac{Ml^2\omega}{3}$
18.	(a) Option (c)
	Explanation:
	centrifugal force may be balanced by the horizontal component of the normal reaction of the rail.
19.	
19.	(c) Option (c)
	Explanation:
	both the angular velocity and the angular momentum remains constant.
	bour the angular verocity and the angular momentum remains constant.
5.0	
20.	
	(d) $-A\omega^2$
	Explanation:
	-A ω^2
21.	
41,	(c) 0
	Explanation:
	0
22.	A > T
	(c) $\frac{\pi}{2}$
	Explanation:

23.

(d)
$$10\sqrt{2}$$
 A

Explanation:

 $10\sqrt{2}$ A

24. **(a)** $4\pi R^2 T(n^{1/3} - 1)$

Explanation:

$$4\pi R^2 T(n^{1/3} - 1)$$

25.

(b) 0.125 Nm⁻¹

Explanation:

0.125 Nm⁻¹

26. **(a)** f

Explanation:

f

27.

(c) 300 m/s

Explanation:

300 m/s

28. **(a)** directly proportional to its temperature.

Explanation:

directly proportional to its temperature.

29.

(c) are approximately equal and its value is 5 cal/mol ^oC.

Explanation:

are approximately equal and its value is 5 cal/mol ^oC.

30.

(c)
$$\frac{(p-q)}{p}$$

Explanation:

$$\frac{(p-q)}{p}$$

31.

(d) 45 μ F

Explanation:

 $45 \mu F$

32.

(b) non-conducting substances.

Explanation:

non-conducting substances.

33.

(b) 32

Explanation:

34.

(c) the points on the surface become source of secondary wavelets.

Explanation:

the points on the surface become source of secondary wavelets.

35.

(b) different speeds.

Explanation:

different speeds.

36.

(c) a spherical wavefront which is converging.

Explanation:

a spherical wavefront which is converging.

37.

(d) 3.3

Explanation:

3.3

38.

(d) Direction of current.

Explanation:

Direction of current.

39.

(c)
$$\frac{\pi\mu_0I}{L}$$

Explanation:

$$\frac{\pi\mu_0 I}{I}$$

40.

(d) perpendicular to both \vec{v} and \vec{B} .

Explanation:

perpendicular to both \vec{v} and \vec{B} .

41.

(d) zero

Explanation:

zero

42.

(d) weaker to stronger part

Explanation:

weaker to stronger part

43. **(a)** 450 V, 15 A

Explanation:

450 V, 15 A

- 44.
- (d) self induction

Explanation:

self induction

45. **(a)** three-times the initial energy

Explanation:

three-times the initial energy

46. **(a)** $r \propto n^2$

Explanation:

 $r \propto n^2\,$

- 47.
- (d) cube of the quantum number

Explanation:

cube of the quantum number

48. (a) ∞

Explanation:

 ∞

49.

- (d) Rectifier, filter, regulator
- **Explanation:**

Rectifier, filter, regulator

50.

(b) $RT(1 - n^{-1})$

Explanation:

 $RT(1 - n^{-1})$