

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

MATHEMATICS

Class 12 - Maths & Stats (Gen)

Time Allowed: 3 hours

General Instructions:

Maximum Marks: 80

The question paper is divided into FOUR sections.

1. Section A: Q. 1 contains Eight multiple-choice questions, each carrying Two marks.

Q. 2 contains Four very short answer-type questions, each carrying One mark.

- 2. **Section B:** Q. 3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- 3. **Section C:** Q. 15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- 4. **Section D:** Q. 27 to Q. 34 contain Eight long answer-type questions, each carrying Four marks. (Attempt any Five)
- 5. The use of a log table is allowed. The use of a calculator is not allowed.
- 6. The figures to the right indicate full marks.
- 7. The use of graph paper is not necessary. Only a rough sketch of the graph is expected.
- 8. For each multiple-choice type of question, only the first attempt will be considered for evaluation.
- 9. Start answering each section on a new page.

Section A

1.	Select	Select and write the correct answer for the following multiple-choice type of questions :		[16]
	(a)	The dual of statement $t \lor (p \lor q)$ is		[2]
		a) $c \wedge (p \lor q)$	b) $t \wedge (p \lor q)$	
		c) $c \wedge (p \wedge q)$	d) $t \wedge (p \wedge q)$	
	(b)	The principal solutions of $\sec x = rac{2}{\sqrt{3}}$ are		[2]
		a) $\frac{\pi}{4}, \frac{11\pi}{4}$	b) $\frac{\pi}{6}, \frac{11\pi}{4}$	
		C) $\frac{\pi}{3}, \frac{11\pi}{6}$	d) $\frac{\pi}{6}, \frac{11\pi}{6}$	
	(c) If $2x + y = 0$ is one of the lines represented by $3x^2 + kxy + 2y^2 = 0$, then the value of k is		$3x^2+kxy+2y^2=0$, then the value of k is	[2]
		a) $\frac{1}{2}$	b) $\frac{-11}{2}$	
		c) $\frac{5}{2}$	d) $\frac{11}{2}$	
	(d) If $A = \{2, 3, 4, 5, 6\}$, then which of the following is not true?		ng is not true?	[2]
		a) $\exists x \in \mathrm{A}$ such that $x+2 < 5$	b) $\exists x \in A$ such that $x + 2 < 9$	

	c) $\exists x \in A$ such that $x + 3 = 8$	d) $orall x \in A$ such that $x+6 \geq 9$			
	(e) If $x=at^4, y=2at^2$, then $rac{dy}{dx}=$		[2]		
	a) $-\frac{1}{t^2}$	b) $2t^2$			
	c) t^2	d) $\frac{1}{t^2}$			
	(f) $\int \frac{dx}{9x^2+1} = $	t^2	[2]		
		· · · · · ·	[-]		
	a) $\frac{1}{3} \tan^{-1}(6x) + c$	b) $\frac{1}{3} \tan^{-1} x + c$			
	c) $\frac{1}{3} \tan^{-1}(2x) + c$	d) $\frac{1}{3} \tan^{-1}(3x) + c$			
	(g) The solution of the differential equation $\frac{dx}{dt} = \frac{dx}{dt}$	$\frac{t \log x}{t}$ is	[2]		
	a) $x=e^{\mathrm{ct}}$	b) $x=e^t+t$ d) $x+e^{ct}=0$			
	c) $xe^{ct}=0$	d) $x + e^{ct} = 0$			
	(h) If $X \sim B(n,p)$ and $E(X) = 12, \mathrm{Var}(X) = 4$, then the value of n is	[2]		
	a) 36	b) 18			
	c) 3	d) 48			
2.	Answer the following questions :		[4]		
		$+ 4xy - 4y^2 = 0$ are perpendicular to each other.	[1]		
	(b) If the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $p\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear, then find the value of p .				
	(c) Evaluate: $\int \frac{1}{\sin x \cdot \cos^2 x} dx$		[1]		
	(d) Write the degree of the differential equation $e^{\frac{dy}{dx}}$	$+ \frac{dy}{ds} = x$	[1]		
	Sectio				
	Attempt any a	8 questions			
3.	Using truth table verify that:		[2]		
	$(p \land q) \lor \sim q \equiv p \lor \sim q$	ζ^{\prime}	[2]		
4.	$(p \land q) \lor \sim q \equiv p \lor \sim q$ If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $AX = I$, then find X by using elementary transformations.				
5.	In $\triangle ABC$, prove that		[2]		
	$ac\cos B - bc\cos A = a^2 - b^2$.				
6.	V	If the vectors $-3\hat{i}+4\hat{j}-2\hat{k},\hat{i}+2\hat{k}$ and $\hat{i}-p\hat{j}$ are coplanar, then find the value of p .			
7.	If \overline{a} , \overline{b} , \overline{c} are the position vectors of the points A, B, C res	spectively and $5ar{a} + 3b - 8ar{c} = 0$ then find the ratio in	[2]		
o	which the point C divides the line segment AB .		[0]		
8. 9.	Discuss the statement pattern, using truth table: \sim (\sim $p/$ Find the approximate value of $\sqrt{8.95}$.	$\langle \sim q angle \lor q$	[2] [2]		
5.	$\frac{\pi}{2}$		[2]		
10.	Evaluate: $\int_{0}^{\frac{1}{2}} \sin^2 x dx$				
11.	Find the area of the region bounded by the curve $y = x^2$	and the lines $x = 1, x = 2$ and $y = 0$.	[2]		
12.	Solve the differential equation $rac{dy}{dx}+y=e^{-x}$		[2]		
13.	If $f(x) = kx, 0 < x < 2$ [2				
	= 0, otherwise,				
	is a probability density function of a random variable X ,	then find:			
	i. value of <i>k</i> .				

ii.
$$P(1 < X < 2)$$

14. Evaluate: $\int_0^{\frac{\pi}{2}} \sqrt{1 - \cos 4x} dx$

Section C

Attempt any 8 questions

15.	Find the general solution of the equation $\sin x = \tan x$.	[3]			
16.	In any $ riangle ABC$, if a^2, b^2, c^2 are in arithmetic progression, then prove that, cot A, cot B, cot C are in arithmetic	[3]			
	progression.				
17.	Find k , if the equation $kxy + 10x + 6y + 4 = 0$ represents a pair of straight lines.	[3]			
18.	Find the angle between the planes $ar{r}\cdot(2\hat{i}+\hat{j}-\hat{k})=3$ and $ar{r}\cdot(\hat{i}+2\hat{j}+\hat{k})=1$.	[3]			
19.	If a line makes angles $90^\circ, 135^\circ, 45^\circ$ with X,Y and Z axes respectively, then find its direction cosines.	[3]			
20.	The cartesian equations of line are $3x-1=6y+2=1-z$. Find the vector equation of line.	[3]			
21.	Differentiate $\cos^{-1}\left(\frac{3\cos x - 2\sin x}{\sqrt{13}}\right)$ w. r. t. x.	[3]			
22.	Evaluate: $\int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} dx$.	[3]			
23.	Obtain the differential equation by eliminating the arbitrary constants A, B from the equation:	[3]			
	$y = A\cos(\log x) + B\sin(\log x)$				
24.	Find the approximate value of $\sin(30^{\circ}30')$.	[3]			
	Given that $1^{\circ} = 0.0175^{c}$ and $\cos 30^{o} = 0.866$				
25.	The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4	[3]			
	will hit the target.				
26.	Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.	[3]			
Section D					
Attempt any 5 questions					
27	A company manufactures bicycles and tricycles each of which must be processed through machines A and B	[4]			

- 27. A company manufactures bicycles and tricycles each of which must be processed through machines *A* and B. [4] Machine *A* has maximum of 120 hours available and machine *B* has maximum of 180 hours available. Manufacturing a bicycle requires 6 hours on machine *A* and 3 hours on machine B. Manufacturing a tricycle requires 4 hours on machine *A* and 10 hours on machine B. If profits are ₹ 180 for a bicycle and ₹ 220 for a tricycle, formulate and solve the L.P.P. to determine the number of bicycles and tricycles that should be manufactured in order to maximize the profit.
- 28. Express the following equations in matrix form and solve them by the method of reduction: [4] x + y + z = 6, 3x y + 3z = 6 and 5x + 5y 4z = 3
- 29. Show that the points A(2,1,-1), B(0,-1,0), C(4,0,4) and D(2,0,1) are coplanar. [4]
- 30. Find the vector equation of the plane passing through the points A(1,0,1), B(1,-1,1) and C(4,-3,2). [4]
- 31. If x = f(t) and y = g(t) are differentiable functions of t, so that y is function of x and $\frac{dx}{dt} \neq 0$, then prove that [4]

$$rac{dy}{dx}=rac{dt}{rac{dx}{dt}}.$$
Hence find $rac{dy}{dx}$, if $x=at^2,y=2at.$

- 32. Verify Rolle's theorem for the function $f(x) = x^2 5x + 9$ on [1,4]. [4]
- 33. Prove that:

34.

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + c$$

Evaluate:
$$\int_{0}^{\pi} \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$
 [4]

3/3

[4]

[2]