

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

MATHEMATICS

Class 12 - Maths & Stats (Gen)

Time Allowed: 3 hours

General Instructions:

Maximum Marks: 80

The question paper is divided into FOUR sections.

1. Section A: Q. 1 contains Eight multiple-choice questions, each carrying Two marks.

Q. 2 contains Four very short answer-type questions, each carrying One mark.

- 2. **Section B:** Q. 3 to Q. 14 contain Twelve short answer type questions, each carrying Two marks. (Attempt any Eight)
- 3. **Section C:** Q. 15 to Q. 26 contain Twelve short answer type questions, each carrying Three marks. (Attempt any Eight)
- 4. **Section D:** Q. 27 to Q. 34 contain Eight long answer-type questions, each carrying Four marks. (Attempt any Five)
- 5. The use of a log table is allowed. The use of a calculator is not allowed.
- 6. The figures to the right indicate full marks.
- 7. The use of graph paper is not necessary. Only a rough sketch of the graph is expected.
- 8. For each multiple-choice type of question, only the first attempt will be considered for evaluation.
- 9. Start answering each section on a new page.

Section A

1.	Select and write the correct answer for the following multiple-choice type of questions :				
	(a)	The negation of $p \wedge (q o r)$ is			
		a) $\sim p \wedge (q o r)$	b) $\sim p \lor (q \land \sim r)$		
		c) $p \lor (\sim q \lor r)$	d) $\sim p \wedge (\sim q ightarrow \sim r)$		
	(b)	If $\sin^{-1}(1-x) - 2\sin^{-1}x = rac{\pi}{2}$, then	x is	[2]	
		a) $-\frac{1}{2}$	b) 0		
		c) 1	d) $\frac{1}{2}$		
	(c) The joint equation of the pair of lines passing through $(2,3)$ and parallel to the coordinate ax		ssing through $(2,3)$ and parallel to the coordinate axes is	[2]	
		a) $xy=0$	b) $xy - 3x - 2y + 6 = 0$		
		c) $xy + 3x + 2y + 6 = 0$	d) $xy - 3x - 2y - 6 = 0$		
	(d)	(d) If $p \wedge q = F, p o q = F$, then the truth values of p and q are:			
		a) T,T	b) F, F		

		c) F, T		d) T,	F			
	(e)	If y is a function of x and	$\log(x+y) =$	2xy , then the v	alue of $y^\prime(0)=$	·		[2]
		a) -1		b) 2				
		c) 0		d) 1				
	(f)	If $\int rac{dx}{4x^2-1} = A \log \Bigl(rac{2x-1}{2x+1} \Bigr)$	$\left(rac{1}{1} ight)+c$, then A	l =				[2]
		a) $\frac{1}{4}$		b) 1/3				
		4 c) 1		d) $\frac{1}{2}$				
	(g)	The integrating factor of I	linear differenti	al equation $x \frac{dy}{dx}$	$x+2y=x^2\log x$	<i>x</i> is		[2]
		a) x^2		b) <i>x</i>				
		c) $\frac{1}{r^2}$		d) $\frac{1}{x}$				
	(h)	Given $X\sim B(n,p).$ If p	0=0.6, E(X)	= 6, then the va	lue of $\operatorname{Var}(X)$	is		[2]
		a) 2.5		b) 2.4				
		c) 2.3		d) 2.6	Ý			
2.	Answe	er the following questions :	:	N				[4]
	(a)	Write the separate equation	ons of lines repr	resented by the e	quation $5x^2$ –	$9y^{2} = 0.$		[1]
	(b)	If the vectors $2\hat{i}-3\hat{j}+$	$4\hat{k}$ and $p\hat{i}+6\hat{j}$	$\hat{j}-8\hat{k}$ are collin	near, then find t	he value of p .		[1]
	(c)	Evaluate: $\int \sec^n x \cdot \tan x$	c dx.					[1]
	(d)	Write the degree of the di	fferential equat	ion $(y''')^2 + 3($	$y^{\prime\prime})+3xy^{\prime}+5$	$\delta y = 0$		[1]
		U U		Section B		•		
			Attem	ot any 8 questio	ons			
3.	Using	truth tables, examine wheth	er the statement	t pattern $(p \wedge q)$	$ee \left(p \wedge r ight)$ is a t	tautology, contr	adiction or	[2]
	conting	gency.						
4	T ¹ . 1 (1)	$\cos\theta$	$-\sin\theta$ 0			6		[2]
4.	Find th	the inverse of matrix $\sin\theta$	$\cos\theta = 0$	by using eleme	entary row trans	formations.		
5.	Find th	The general solution of $ an 2a$	x = 0.	4				[2]
6.	If $\bar{p} = \hat{i} - 2\hat{i} + \hat{k}$ and $\bar{q} = \hat{i} + 4\hat{i} - 2\hat{k}$ are position vector (PV) of points P and Q find the position vector						[2]	
	of the j	point R which divides segm	ent PQ interna	ally in the ratio 2	2:1.		L	
7.	Find th	e direction cosines of the ve	ector $\hat{i}+2\hat{j}-$	$2\hat{k}$.				[2]
8.	Write t	he truth values of the follow	ving statements	:				[2]
	i. 2 is	s a rational number and $\sqrt{2}$	is an irrational	number.				
	ii. $2 +$	$-3=5 ext{ or } \sqrt{2}+\sqrt{3}=\sqrt{3}$	5.					
9.	Check	whether the conditions of R	colle's theorem a	are satisfied by t	he function			[2]
	f(x) =	=(x-1)(x-2)(x-3),x	$x\in \left[1,3 ight] .$					
10.	Evaluate: $\int_0^{\frac{\pi}{2}} \cos^2 x dx$						[2]	
11.	Find the area of the region bounded by the curve $y = x^2$ and the lines $x = 1, x = 2$ and $y = 0$.						[2]	
12.	Solve the differential equation $y \frac{dy}{dx} + x = 0$.						[2]	
13.	The pr	obability distribution of X ,	the number of c	lefects per 10 m	etres of a fabric	is given by		[2]
		x	0	1	2	3	4	1

	P(X=x)	0.45	0.35	0.15	0.03	0.02				
	Find the variance of <i>X</i> .						I			
14.	Evaluate: $\int_0^{\frac{\pi}{2}} \sqrt{1 - \cos 4x} dx$ [2]									
	Section C									
Attempt any 8 questions										
15. Show that:							[3]			
	$\cos^{-1}\left(rac{4}{5} ight) + \cos^{-1}\left(rac{12}{13} ight) = \cos^{-1}\left(rac{33}{65} ight).$									
16.	If $-1 \le x \le 1$, then prove that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$									
17.	If one of the lines given by $ax^2 + 2hxy + by^2 = 0$ bisects an angle between the co-ordinate axes then show [
	that $(a+b)^2=4h^2$.									
18.	If points $A(5,5,\lambda), B(-1,3,2)$ and $C(-4,2,-2)$ are collinear, then find the value of $\lambda.$									
19.	Prove that the volume of a tetrahedron with coterminus edges \bar{a}, \bar{b} and \bar{c} is $\frac{1}{6}[\bar{a}, \bar{b}\bar{c}]$. Hence, find the volume of									
	tetrahedron whose coterminus edg	es are $ar{a} = \hat{i} + ar{a}$	$2\hat{j}+3\hat{k}$, $ar{b}=-$	$-\hat{i}+\hat{j}+2\hat{k}$ as	nd $\overline{c}=2\hat{i}+\hat{j}$.	$+ 4 \hat{k}.$				
20.	Find the vector equation of the pla	ne passing thro	ugh the point A	(-1, 2, -5) and	d parallel to the	vectors	[3]			
	$4\hat{i}-\hat{j}+3\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}.$			/						
21.	If $\log_{10}\left(rac{x^3-y^3}{x^3+y^3} ight)=2$, then show t	that $\frac{dy}{dx} = -\frac{99}{100}$	$\frac{\partial x^2}{\partial y^2}$.	4			[3]			
22.	Evaluate: $\int \frac{x+1}{(x+2)(x+3)} dx$						[3]			
23.	Find the particular solution of the differential equation $\frac{dy}{dx} = e^{2y} \cos x$, when $x = \frac{\pi}{6}, y = 0$.									
24.	Find the approximate value of $ an$	$^{-1}(1.002).$	the	Y	0		[3]			
	[Given: π = 3.1416]									
25.	Given is $X \sim B(n,p).$ If $E(X)=6,$ and $\mathrm{Var}(X)=4.2,$ find the value of						[3]			
	i. n									
	ii. n or p									
26.	Find k if the function $f(x)$ is defined	ied by					[3]			
	$f(x) = kx(1-x), ext{ for } 0 < x < 1$									
	= 0, otherwise,									
	is the probability density function (p.d.f.) of a random variable (r.v.) $X.$ Also find $P\left(X < rac{1}{2} ight).$									
	Section D									
	\checkmark	Attemp	ot any 5 questio	ons						
27.	Solve the following L. P. P. graphic	cally:					[4]			
	Minimize: $Z \doteq 6x + 2y$									
Subject to: $5x + 9y \le 90, x + y \ge 4, y \le 8, x \ge 0, y \ge 0$										
28.	Find the inverse of the matrix, A =	$= \begin{vmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{vmatrix}$	by using colum	nn transformatio	ons.		[4]			
29.	Using vector method, find incentre of the triangle whose vertices are $P(0,4,0)$, $Q(0,0,3)$ and $R(0,4,3)$.						[4]			
30.	Find the shortest distance between	the lines $\overline{r}=($	$(\hat{4i}-\hat{j})+\lambda(\hat{i}$	$(+ 2 \hat{j} - 3 \hat{k})$ and	ıd		[4]			
	$ar{r}=(\hat{i}-\hat{j}+2\hat{k})+\mu(\hat{i}+4\hat{j}-5\hat{k})$ where λ and μ are parameters.									
31.	If $x=f(t),y=g(t)$ are different	tiable functions	of parameter t t	then prove that	y is a differentia	ble function of	[4]			
	x and									

$$rac{dy}{dx}=rac{rac{dy}{dt}}{rac{dx}{dt}},rac{dx}{dt}
eq 0$$

3/4

32. A box with a square base is to have an open top. The surface area of box is 147*sq*. *cm*. What should be its [4] dimensions in order that the volume is largest?

33. Evaluate:
$$\int_{a} \frac{dx}{2 + \cos x - \sin x}$$

34. Evaluate:
$$\int_{-a}^{a} \sqrt{\frac{a-x}{a+x}} \, dx$$

[4] [4]