Solution

MATHEMATICS

Class 12 - Mathematics

Section A

1.

(d) I Explanation:

Given that $A^2 = A$ Calculating value of $(I + A)^3 - 7A$: $(I + A)^3 - 7A = I^3 + A^3 + 3I^2A + 3IA^2 - 7A$ $= I + A^2 \cdot A + 3A + 3A^2 - 7A (I^n = I \text{ and } I \cdot A = A)$ $= I + A \cdot A + 3A + 3A - 7A (A^2 = A)$ $= I + A^2 + 3A + 3A - 7A$ = I + 7A - 7AHence, $(I + A)^3 - 7A = I$

2. **(a)** $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Explanation:

The matrix on the R.H.S of the given matrix is of order 2 \times 2 and the one given on left side is 2 \times 2. Therefore A has to be a 2 \times 2 matrix.

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$
 $\begin{pmatrix} 3a + b & 2a - b \\ 3c + d & 2c - d \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$
 $3a + b = 4 \dots (i)$
 $2a - b = 1 \dots (ii)$
 $3c + d = 2 \dots (iii)$
 $2c - d = 3 \dots (iv)$
Using (i) and (ii)
 $a = 1$
 $b = 1$
Using (iii) and (iv)
 $c = 1$
 $d = -1$
So A becomes $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

3.

Explanation:

|A| = 2, $|adj A| = |A|^{2 - 1} = |A| = 2$

4. **(a)** x = 0

(b) 2

Explanation:

Given, function $f(x) = \begin{cases} 1, & \text{if } x \neq 0\\ 2, & \text{if } x = 0 \end{cases}$ At x = 0, Value of function, f(0) = 2 And $\lim_{x\to 0} f(x) = 1$ $\therefore \lim_{x\to 0} f(x) \neq f(0)$ or $\lim_{x\to a} f(x) \neq$ value of function \therefore Function f(x) is not continuous at x = 0.

5.

(c) $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$ Explanation: DR's are 1 + 2, 2 - 4, 3 + 5, i.e. 3, -2, 8. Dividing by $|\sqrt{9+4+64}| = \sqrt{77}$ DC's are $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$

6.

(d) y sin x = x + C Explanation: We have, $\frac{dy}{dx}$ + y cot x = cosec x Comparing with $\frac{dy}{dx}$ + Py = Q of the above equation then, we get \Rightarrow P = cot x, Q = cosec x I.F. = $e^{\int Pdx} = e^{\int \cot x dx} = e^{\log \sin x} = \sin x$ Multiplying on both sides by sin x sin x $\frac{dy}{dx}$ + y cos x = 1 $\Rightarrow \frac{d}{dx}(y \sin x) = 1$ \Rightarrow y sin x = $\int 1 dx$ \Rightarrow y sin x = x + C

7.

(c) 2500

Explanation:

Here , Maximize Z = 50x+60y , subject to constraints x +2 y \leq 50 , x + y \geq 30, x, y \geq 0.

Corner points	Z = 50x + 60 y
P(50,0)	2500
Q(0 , 30)	1800
R(10, 20)	1700

Hence, the maximum value is 2500

8.

(d) $\frac{\pi}{2}$ Explanation: $\frac{\pi}{2}$

9.

(b) $\sin^{-1} x - \sqrt{1 - x^2} + C$ Explanation: Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int \sec^2 x dx = \tan x$ Therefore , $= \int \sqrt{\frac{(1+x)^2}{(1+x)(1-x)}} dx$

$$= \int \frac{1+x}{\sqrt{1-x^2}} dx = \int \frac{1}{\sqrt{1-x^2}} dx + \int \frac{x}{\sqrt{1-x^2}} dx$$

Put 1 - x² = t
-2x dx = dt
= sin⁻¹ x - $\frac{1}{2} \int \frac{1}{\sqrt{t}} dt + c$
= sin⁻¹ x - $\frac{1}{2} \frac{\sqrt{t}}{\frac{1}{2}} + c$
= sin⁻¹ x - $\sqrt{t} + c = sin^{-1} x - \sqrt{1-x^2} + c$

10. (a) kA

Explanation:

$$A = [S_{ij}]$$

$$S = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
As, $S_{ij} = k$
Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ {Square Matrix}

$$AS = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

$$= \begin{bmatrix} ka_{11} & ka_{12} \\ ka_{21} & ka_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= kA$$

$$SA = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

$$= \begin{bmatrix} ka_{11} & ka_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= k A$$
Hence, $AS = SA = kA$

11.

(c) {X: |X| = 5}

Explanation:

|x| = 5 is not a convex set as any two points from negative and positive x -axis if joined will not lie in set.

12. **(a)** $\lambda = -2$

Explanation:

Given that, $\lambda \hat{1} + \hat{j} + 2\hat{k}$, $\hat{1} + \lambda\hat{j} - \hat{k}$, and $2\hat{1} - \hat{j} + \lambda\hat{k}$ are coplanar. Let $\vec{a} = \lambda \hat{i} + \hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} + \lambda\hat{j} - \hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + \lambda\hat{k}$ Now, \vec{a} , \vec{b} , \vec{c} are coplanar If, $\begin{vmatrix} \lambda & 1 & 2 \\ 1 & \lambda & -1 \\ 2 & -1 & \lambda \end{vmatrix} = 0$ $\Rightarrow \lambda (\lambda^2 - 1) - 1(\lambda + 2) + 2(-1 - 2\lambda) = 0$ $\Rightarrow \lambda^3 - \lambda - \lambda - 2 - 2 - 4\lambda = 0$ $\Rightarrow \lambda^3 - 6\lambda - 4 = 0$ $\Rightarrow (\lambda + 2) (\lambda^2 - 2\lambda - 2) = 0$ $\Rightarrow \lambda = -2$ and $\lambda = \frac{2\pm\sqrt{(-2)^2 - 4 \times 1 \times -2}}{2} = \frac{2\pm\sqrt{12}}{2}$ $\Rightarrow \lambda = -2$ and $\lambda = 1 \pm \sqrt{3}$.

13.

(b) there is only one solution

Explanation:

For the system of equations:

x + 2y + 3z = 12x + y + 3z = 25x + 5y + 9z = 4The matrix equation corresponding to the above system is

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

Let A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9 \end{bmatrix}$$

$$|A| \neq 0$$

Hence, a unique solution exists of the above system.

14.

(c) $\frac{3}{7}$ **Explanation:**

Box I \rightarrow 4 W, 3 B, Box II \rightarrow 3 W, 4 B Probability for choosing first box = $\frac{3}{6} = \frac{1}{2}$ Probability for choosing the second box = : Required probability = $\frac{\frac{1}{2} \times \frac{3}{7}}{\frac{1}{2} \times \frac{3}{7} + \frac{1}{2} \times \frac{4}{7}} = \frac{\frac{3}{14}}{\frac{3}{14} + \frac{4}{14}}$ $=\frac{3/14}{7/14}=\frac{3}{7}$

15.

(b) 3, 1 **Explanation:** 3, 1

16.

(b) 2

Explanation:

We have: $\overrightarrow{OA} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$ (position vector of A) similarly, $\overrightarrow{OB} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\overrightarrow{OC} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$, $\overrightarrow{OD} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$: , where $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}) - (-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}) = 2\hat{i} + 0\hat{j} + 0\hat{k}$ (by triangle law of vector addition), similarly $\overrightarrow{AD} = 0\hat{i} - \hat{j} + 0\hat{k}$, Therefore, area of rectangle ABCD is given by $|\overrightarrow{ABX}\overrightarrow{AD}|$, where $\overrightarrow{ABX}\overrightarrow{AD} = 0$ $\begin{vmatrix} \hat{j} & \hat{k} \\ 0 & 0 \end{vmatrix} = \hat{i} (0-0) - \hat{j} (0-0) + \hat{k} (-2-0) = -2\hat{k}, \left| \overrightarrow{ABX} \overrightarrow{AD} \right| = \sqrt{0^2 + 0^2 + (-2)^2} = 2 \text{ sq. units.}$ i $\mathbf{2}$

17.

0

(b) $\frac{1}{2}$ **Explanation:** Given that $y = \tan^{-1}\left(\frac{1-\cos x}{\sin x}\right)$ Using 1 - cos x = 2sin² $\frac{x}{2}$ and Using sin x = 2 sin x $\frac{x}{2}$ cos $\frac{x}{2}$, we obtain y = tan⁻¹ $\left(\frac{2 \sin^2 \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}\right)$ or y = tan⁻¹ tan $\frac{x}{2}$ $y = \frac{x}{2}$ Differentiating with respect to x, we obtain $\frac{dy}{dx} = \frac{1}{2}$

18. **(a)** 3, 1, - 2

Explanation: We have, x - y + z - 5 = 0 = x - 3y - 6 $\Rightarrow x - 3y - 6 = 0$ &, x - y + z - 5 = 0 $\Rightarrow x = 3y + 6 \dots (i)$ $x - y + z - 5 = 0 \dots (ii)$ From (i) and (ii) We get, 3y + 6 - y + z - 5 = 0 $\Rightarrow 2y + z + 1 = 0$ $\Rightarrow y = \frac{-z - 1}{2}$ $y = \frac{x - 6}{3}$ [from (i)] $\therefore \frac{x - 6}{3} = y = \frac{-z - 1}{2}$ So, the given equation can be re-written as $\frac{x - 6}{3} = \frac{y}{1} = \frac{z + 1}{-2}$

Hence, the direction ratios of the given line are proportional to 3, 1, -2.

19.

(b) Both A and R are true but R is not the correct explanation of A.

Explanation:

We have, $f(x) = x^2 - 4x + 6$ or f'(x) = 2x - 4 = 2 (x - 2) $\leftarrow -\infty$ 2

Therefore, f'(x) = 0 gives x = 2.

Now, the point x = 2 divides the real line into two disjoint intervals namely, $(-\infty, 2)$ and $(2, \infty)$. In the interval $(-\infty, 2)$, f'(x) = 2x - 4 < 0.

Therefore, f is strictly decreasing in this interval.

Also, in the interval (2, ∞), f'(x) > 0 and so the function f is strictly increasing in this interval. Hence, both the statements are true but Reason is not the correct explanation of Assertion.

20. (a) Both A and R are true and R is the correct explanation of A.

Explanation:

Assertion: Given that,

 $A = \{2, 4, 6\},\$

 $R = \{3, 5, 7, 9\}$

and R = {(2,3), (4, 5), (6, 7)}

Here, f(2) = 3, f(4) = 5 and f(6) = 7

It can be seen that the images of distinct elements of A under f are distinct.

Hence, function f is one-one but f is not onto as $9 \in B$ does not have a pre-image in A.

Hence, both Assertion and Reason are true, but Reason is not a correct explanation of Assertion.

Section B

21. We know that the range of principal value of cosec⁻¹ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ - [0]

Let $\operatorname{cosec}^{-1}(-1) = \theta$. Then we have, $\operatorname{cosec} \theta = -1$ $\operatorname{cosec} \theta = -1 = \operatorname{cosec} \frac{\pi}{2} = \operatorname{cosec} \left(\frac{-\pi}{2}\right)$ $\therefore \theta = \frac{-\pi}{2} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - [0]$

Hence, the principal value of cosec⁻¹ (-1) is equal to $\frac{-\pi}{2}$

First of all we need to find the principal value for cosec⁻¹(–2) Let,

 $cosec^{-1}(-2)=Y$ \Rightarrow cosec y = -2 \Rightarrow -cosec y = 2 \Rightarrow -cosec $\frac{\pi}{6} = 2$ As we know that $cosec(-\theta) = -cosec\theta$ \therefore -cosec $\frac{\pi}{6}$ = cosec $\left(\frac{-\pi}{6}\right)$ The range of principal value of $\operatorname{cosec}^{-1}$ (-2) is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ and $\operatorname{cosec}\left(\frac{-\pi}{6}\right) = -2$ Thus, the princi value of $\operatorname{cosec}^{-1}(-2)$ is $\frac{-\pi}{6}$. \therefore Now, the question changes to $\operatorname{Sin}^{-1}\left[\cos\frac{-\pi}{6}\right]$ $Cos(-\theta) = cos(\theta)$ \therefore we can write the above expression as $\operatorname{Sin}^{-1}\left[\cos\frac{\pi}{e}\right]$ Let, $\operatorname{Sin}^{-1}\left(\frac{\sqrt{3}}{2}\right) = Y$ $\Rightarrow \sin y = \frac{\sqrt{3}}{2}$ \Rightarrow Y = $\frac{\pi}{3}$ $\frac{\sqrt{3}}{2}$ The range of principal value of \sin^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $\sin\left(\frac{\pi}{3}\right)$ Therefore, the principal value of $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{3}$ Hence, the principal value of the given equation is $\frac{\pi}{3}$ 22. Let x denote the area of the circle of variable radius r. \therefore Area of circle $(x) = \pi r^2$. Rate of change of area x w.r.t. r $\frac{dx}{dr} = \pi \left(2r\right) = 2\pi r$ a. When r = 3 cm, then $\frac{dx}{dr}=2\pi\left(3
ight)=6\pi cm^{2}/\sec\left(3
ight)$ b. When r = 4 cm, then $\frac{dx}{dr} = 2\pi (4) = 8\pi cm^2 / \sec^2$ 23. we have, $f(x)=kx^3 - 9x^2 + 9x + 3$ $\Rightarrow f'(x) = 3kx^2 - 18x + 9$ Since $\mathrm{f}(\mathrm{x})$ is increasing on R, therefore , $f'(x) > 0 \; orall \; x \in R$ $\Rightarrow \ 3kx^2 - 18x + 9 > 0, orall \ x \in \ R$ $\Rightarrow kx^2 - 6x + 3 > 0, \forall \ x \in R$ \Rightarrow k>0 and 36-12k<0 [$\therefore ax^2 + bx + c > 0, \forall x \in R \Rightarrow a > 0 and discriminant < 0$] $\Rightarrow k > 3$

Hence, f(x) is increasing on R, if k>3.

OR

We have seen that the function, f'(x) > 0 for 0 < x < 1. But, f'(x) can be positive as well as negative when -1 < x < 0. So, f'(x) can be positive as well as negative for $x \in (-1, 1)$. Hence, f(x) is neither increasing nor decreasing on (-1, 1).

24. Let I =
$$\int \frac{1}{x\sqrt{x^4-1}} dx$$
 ...(i)
Also et x² = t then, we have
d(x²) = dt
2x dx = dt

$$\Rightarrow dx = \frac{dt}{2x}$$
Putting x = t and $dx = \frac{dt}{2x}$ in equation (i), we get
$$I = \int \frac{1}{x\sqrt{t^2 - 1}} \times \frac{dt}{2x}$$

$$= \frac{1}{2} \int \frac{1}{x^2\sqrt{t^2 - 1}} dt$$

$$= \frac{1}{2} \int \frac{1}{t\sqrt{t^2 - 1}} dt$$

$$= \frac{1}{2} \sec^{-1} t + c$$

$$\therefore I = \frac{1}{2} \sec^{-1} t + c$$

25. It is given that $f(x) = |\sin 4x + 3|$

Now, we can see that $-1 \leq \sin 4x \leq 1$ $\Rightarrow 2 \leq \sin 4x + 3 \leq 4$

 $\Rightarrow 2 \leq |\sin 4x + 3| \leq 4$

Therefore, the maximum and minimum value of function h are 4 and 2 respectively.

Section C

26. let the given integral be,

$$\begin{split} & l = \int \frac{1}{\sin(x-a) \cdot \sin(x-b)} dx \\ &= \frac{1}{\sin(b-a)} \int \frac{\sin(b-a)}{\sin(x-a) \cdot \sin(x-b)} dx \\ &= \frac{1}{\sin(b-a)} \int \frac{\sin[(x-a) - (x-b)]}{\sin(x-a) \cdot \sin(x-b)} dx \\ &= \frac{1}{\sin(b-a)} \int \int \frac{\sin(x-a) \cdot \cos(x-b) - \cos(x-a) \sin(x-b)}{\sin(x-a) \cdot \sin(x-b)} dx \\ &= \frac{1}{\sin(b-a)} \int \left[\frac{\sin(x-a) \cdot \cos(x-b)}{\sin(x-a) \cdot \sin(x-b)} - \frac{\cos(x-a) \sin(x-b)}{\sin(x-a) \sin(x-b)} \right] dx \\ &= \frac{1}{\sin(b-a)} \int [\cot(x-b) - \cot(x-a)] dx \\ &= \frac{1}{\sin(b-a)} \int \cot(x-b) dx - \int \cot(x-a) dx \\ &= \frac{1}{\sin(b-a)} \left[\ln |\sin(x-b)| - \ln |\sin(x-a)| \right] + C \\ &= \frac{1}{\sin(b-a)} \left[\ln \left| \frac{\sin(x-b)}{\sin(x-a)} \right| \right] + C \\ &= \frac{1}{\sin(a-b)} \left[\ln \left| \frac{\sin(x-b)}{\sin(x-a)} \right| \right] + C \\ &= \frac{1}{\sin(a-b)} \left[\ln \left| \frac{\sin(x-a)}{\sin(x-b)} \right| \right] + C \end{split}$$

27. Let E_1 : Event that the student knows the answer

 E_2 : Event that the student guesses the answer

E: Event that the answer is correct

Here, E₁ and E₂ are mutually exclusive and exhaustive events.

 $\therefore P(E_1) = \frac{3}{5} \text{ and } P(E_2) = \frac{2}{5}$ Now, $P\left(\frac{E}{E_1}\right) = P$ (the student answered correctly, given the knows the answer)=1 $P\left(\frac{E}{E_2}\right) = P$ (the student answered correctly, given he gusses)= $\frac{1}{3}$ The probability that the student knows the answer given that he answered it correctly is

given by $P\left(\frac{E_1}{E}\right)$

By using Baye's theorem, we get

$$P\left(\frac{E_{1}}{E}\right) = \frac{P\left(\frac{E}{E_{1}}\right) \cdot P(E_{1})}{P\left(\frac{E}{E_{1}}\right) P(E_{1}) + P\left(\frac{E}{E_{2}}\right) P(E_{2})}$$
$$= \frac{1 \times \frac{3}{5}}{1 \times \frac{3}{5} + \frac{1}{3} \times \frac{2}{5}} = \frac{\frac{3}{5}}{\frac{3}{5} + \frac{2}{15}}$$
$$= \frac{\frac{3}{5}}{\frac{\frac{3}{5} + 10}{15}} = \frac{3 \times 3}{25} = \frac{9}{25}$$

28. Let the given integral be,

$$I=\int rac{x^2}{x^2-4}dx$$

Therefore by long division. $egin{aligned} I &= \int x + rac{4x}{x^2 - 4} dx \ I &= \int x dx + \int rac{4x}{x^2 - 4} dx \end{aligned}$ $=rac{x^2}{2}+\intrac{4x}{(x-2)(x+2)}dx$ Let $I_1=\intrac{4x}{(x-2)(x+2)}dx$ So $I=rac{x^2}{2}+I_1$ Therefore $I_1=\intrac{4x}{x^2-4}dx$ Putting $x^2 - 4 = t$ 2xdx = dt $I_1 = 2 \int \frac{dt}{t}$ $I_1=2\log \left|x^2-4
ight|+c$ Putting the value of I₁ in I, $I = rac{x^2}{2} + 2\log |x^2 - 4| + c$ OR Given integral is: $\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$ Let us express $x+3=Arac{d}{dx}ig(5-4x-x^2ig)+B$ = A (- 4 - 2x) + B Equating the coefficients of x and the constant terms from both sides, we get - 2A = 1 and -4 A + B = 3, i.e., $A = -\frac{1}{2}$ and B = 1 Therefore, $\int \frac{x+3}{\sqrt{5-4x-x^2}} dx = -\frac{1}{2} \int \frac{(-4-2x)dx}{\sqrt{5-4x-x^2}} + \int \frac{dx}{\sqrt{5-4x-x^2}}$ $=-\frac{1}{2}I_1+I_2$ (i) In I₁, put 5 - $4x - x^2 = t$, so that (- 4 - 2x) dx = dt. Therefore, $I_1 = \int \frac{(-4-2x)dx}{\sqrt{5-4x-x^2}} = \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C_1$ $= 2\sqrt{5 - 4x - x^{2}} + C_{1} \dots (ii)$ Now consider $I_{2} = \int \frac{dx}{\sqrt{5 - 4x - x^{2}}} = \int \frac{dx}{\sqrt{9 - (x + x^{2})^{2}}}$ Put x + 2 = t, so that dx = dt. Therefore, $I_2 = \int \frac{dt}{\sqrt{3^2 - t^2}} = \sin^{-1} \frac{t}{3} + C_2$ $=\sin^{-1}\frac{x+2}{3}+C_2$ (iii) Substituting (ii) and (iii) in (i), we obtain $\int \frac{x+3}{\sqrt{5-4x-x^2}} = -\sqrt{5-4x-x^2} + \sin^{-1}\frac{x+2}{3} + C, \text{ where } C = C_2 - \frac{C_1}{2}$ 29. $x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$ $\frac{dy}{dx} = \frac{y \cos\left(\frac{y}{x}\right) + x}{x \cos\left(\frac{y}{x}\right)} \dots (i)$ let y = vx let y = vx $\frac{dy}{dx} = v.1 + x. \frac{dv}{dx} \dots (ii)$ Put $\frac{dy}{dx}$ in eq ...(i) $v + x \frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}$ $v + x \frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}$ $x \frac{dv}{dx} = \frac{v \cos v - 1}{\cos v} - v$ $x \frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}$ $x \frac{dv}{dx} = \frac{1}{\cos v}$ $\int \cos v dv = \int \frac{dx}{dx}$ $\int \cos v dv = \int \frac{dx}{x}$ $\sin v = \log x + \log c \sin v = \log x + \log c$ $\sin v = \log |cx| \sin v = \log |cx| [\because y = vx] [y = vx]$ $\sin\left(\frac{y}{x}\right) = \log|cx|$

The given differential equation is,

 $e^{\frac{dy}{dx}} = x + 1$ $\Rightarrow \frac{dy}{dx} = \log (x + 1)$ $\Rightarrow dy = \log (x + 1) dx$ Integrating both sides, we get $\int dy = \int \log (x + 1) dx$ $\Rightarrow y = \log (x + 1) \int 1 dx - \int \left[\frac{d}{dx} \{\log(x + 1)\} \int 1 dx\right] dx$ $\Rightarrow y = x \log (x + 1) - \int \frac{1}{x+1} \times x dx$ $\Rightarrow y = x \log (x + 1) - \int \left(1 - \frac{1}{x+1}\right) dx$ $\Rightarrow y = x \log (x + 1) - \int dx + \int \frac{1}{x+1} dx$ $\Rightarrow y = x \log (x + 1) - x + \log |x + 1| + C$ $\Rightarrow y = (x + 1) \log |x + 1| - x + C \dots (i)$ It is given that at x = 0 and y = 3 Substituting the values of x and y in (i), we get C = 3

Therefore, substituting the value of C in (i), we get

$$y = (x + 1) \log |x + 1| - x + 3$$

Hence, $y = (x + 1) \log |x + 1| - x + 3$ is the required solution.

30. First, we will convert the given inequations into equations, we obtain the following equations:

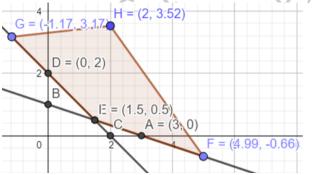
 $x_1 + 3x_2 = 3$, $x_1 + x_2 = 2$, $x_1 = 0$ and $x_2 = 0$

Region represented by x_1 + 3 $x_2 \geq 3$:

The line $x_1 + 3 x_2 = 3$ meets the coordinate axes at A(3,0) and B(0,1) respectively. By joining these points we obtain the line $x_1 + 3 x_2 = 3$

Clearly (0,0) does not satisfies the inequation $x_1 + 3 x_2 \ge 3$. So, the region in the plane which does not contain the origin represents the solution set of the inequation $x_1 + 3 x_2 \ge 3$ Region represented by $x_1 + x_2 \ge 2$ The line $x_1 + x_2 = 2$ meets the coordinate axes at C(2,0) and D(0,2) respectively. By joining these points we obtain the

line $x_1 + x_2 = 2$ Clearly (0,0) does not satisfies the inequation $x_1 + x_2 \ge 2$. So, the region containing the origin represents the solution set of the inequation $x_1 + x_2 \ge 2$ Region represented by $x_1 \ge 0$ and $x_2 \ge 0$ since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations $x_1 \ge 0$ and $x_2 \ge 0$ The feasible region determined by subject to the constraints are, $x_1 + 3 x_2 \ge 3$, $x_1 + x_2 \ge 2$, and the non-negative restrictions $x_1 \ge 0$, and $x_2 \ge 0$, are as follows



The corner points of the feasible region are O(0,0), B(0,1), $E\left(\frac{3}{2}, \frac{1}{2}\right)$ and C(2,0)

The values of objective function at the corner points are as follows:

Corner point : $z = 3x_1 + 5x_2$ $O(0, 0) : 3 \times 0 + 5 \times 0 = 0$ $B(0, 1) : 3 \times 0 + 5 \times 1 = 5$ $E\left(\frac{3}{2}, \frac{1}{2}\right) : \frac{3}{2} + 5 \times \frac{1}{2} = 7$ $C(2, 0) : 3 \times 2 + 5 \times 0 = 6$

Therefore, the minimum value of objective function Z is 0 at the point O(0,0). Hence, $x_1 = 0$ and $x_2 = 0$ is the optimal solution of

the given LPP. Thus, the optimal value of objective function Z is 0.

OR

Linear constraints

 $egin{array}{l} x+2y \leq 10 \ 3x+y \leq 15 \end{array}$

 $egin{array}{c} 5x+y\geq \ x,y\geq 0 \end{array}$

and objective function is max (Z) = 3x + 2y.

Reducing the above inequations into equations and finding their point of intersections, i.e.,

x + 2y = 10 ... (i) 3x + y = 15 ... (ii)

 $x = 0, y = 0 \dots$ (iii)

Equations	Point of intersection
(i) and (ii)	$x = 4 \ and \ y = 3 \ \Rightarrow (4,3)$
(i) and (iii)	at $x=0 \Rightarrow y=5 \Rightarrow (0,5)$
	at y = 0 \Rightarrow x = 10 \Rightarrow (10, 0)
(ii) and (iii)	at $x = 0 \Rightarrow y = 15 \Rightarrow (0, 15)$
	at $y = 0 \Rightarrow x = 5 \Rightarrow (5, 0)$

Now for feasible region, using origin testing method for each constraint

 $x+2y\leq 10$, let ${
m x}$ = 0, ${
m y}$ = 0

 $\Rightarrow 0 \leq 10$ i.e., true

 \Rightarrow The shaded region will be toward the origin.

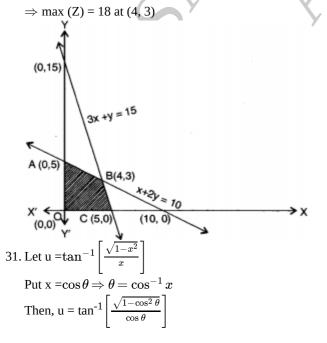
Non negative restrictions $x \ge 0, y \ge 0$ indicates that the feasible region will exist in first quadrant.

Now, corner points are A(0,5), B(4,3)C(5,0) and D(0,0).

For optimal solution substituting the value of all corner points in Z = 3x + 2y,

	Corner points	Y	Z
A(0,5)			10
B(4,3)			18 maximum
C(5,0)			15
D(0,0)			0

Hence, the maximum value of Z exist when x = 4 and y = 3



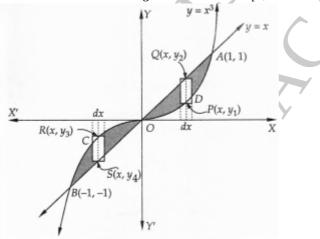
 $= \tan^{-1} \left[\frac{\sqrt{\sin^2 \theta}}{\cos \theta} \right] \left[\because \cos^2 \theta + \sin^2 \theta = 1 \Rightarrow \sin^2 \theta = 1 - \cos^2 \theta \right]$ $= \tan^{-1} \left| \frac{\sin \theta}{\cos \theta} \right|$ $= \tan^{-1}[\tan \theta] = \theta$ $\Rightarrow \quad u = \cos^{-1} x$ On differentiating both sides w.r.t x, we get $\frac{du}{dx} = -\frac{1}{\sqrt{1-x^2}}$ Again , let v = $\cos^{-1}\left(2x\sqrt{1-x^2}\right)$ Put x = $\cos\theta \Rightarrow \theta = \cos^{-1} x$ Then, $v = \cos^{-1} \left[2 \cos \theta \sqrt{1 - \cos^2 \theta} \right]$ $=\cos^{-1}[2\cos heta\sin heta]\left[egin{array}{c} \therefore\sin heta=\sqrt{1-\cos^2 heta}\ \Rightarrow\sin^2 heta=1-\cos^2 heta\end{array}
ight]$ $=\cos^{-1}[\sin 2\theta]$ $=\cos^{-1}\left[\cos\left(rac{\pi}{2}-2 heta
ight)
ight]=rac{\pi}{2}-2 heta
ight)$ $\Rightarrow v=rac{\pi}{2}-2\cos^{-1}x\left[\because heta=\cos^{-1}x
ight]$ On differentiating both sides w.r.t x, we get $\frac{dv}{dx} = \frac{2}{\sqrt{1-x^2}}$ Now, $\frac{du}{dv} = \frac{du}{dx} \times \frac{dx}{dv} = -\frac{1}{\sqrt{1-x^2}} \times \frac{\sqrt{1-x^2}}{2}$ $=-\frac{1}{2}$ Section D

32. The given curves are,

y = x ...(i) and y = x³ ...(ii)

The sketch of the curve $y = x^3$ is shown in Fig. Clearly, y = x is a line passing through the origin and making an angle of 45° with x-axis. The shaded portion shown in Fig. is the region bounded by the curves y = x and $y = x^3$. Solving y = x and $y = x^3$ simultaneously, we find that the two curves intersect at O (0, 0), A (1,1) and B (-1, -1).

When we slice the shaded region into vertical strips, we observe that the vertical strips change their character at O.



Therefore, the required area is given by,

Required area = Area BCOB + Area ODAO

Area BCOB: Each vertical strip in this region has its lower end on y = x and the upper end on $y = x^3$. Therefore, the approximating rectangle shown in this region has length $= |y_4 - y_3|$, width = dx and area $= |y_4 - y_3| dx$. Since the approximating rectangle can move from x = -1 to x = 0.

$$\therefore \text{ Area BCOB} = \int_0^0 |y_4 - y_3| \, dx = \int_{-1}^0 -(y_4 - y_3) \, dx \, [\because y_4 < y_3 \therefore y_4 - y_3 < 0] \\ = \int_{-1}^0 -(x - x^3) \, dx \, [\because R (x, y_3) \text{ and } S (x, y_4) \text{ lie on (ii) and (i) respectively} \therefore y_3 = x_3 \text{ and } y_4 = x] \\ = \int_{-1}^0 (x^3 - x) \, dx = \left[\frac{x^4}{4} - \frac{x^2}{2}\right]_{-1}^0 = 0 - \left(\frac{1}{4} - \frac{1}{2}\right) = \frac{1}{4} \text{ sq. units}$$

Area ODAO: Each vertical strip in this region has its two ends on (ii) and (i) respectively. So, the approximating rectangle shown

in this region has length = $|y_2 - y_1|$, width = dx and therefore, we have, Area ODAO = $\int_0^1 |y_2 - y_1| \, dx = \int_0^1 (y_2 - y_1) \, dx$ [:: $y_2 > y_1$: $y_2 - y_1 > 0$] $= \int_{0}^{1} (x - x^{3}) dx$ [: P(x, y₁) and Q(x, y₂) lie on (ii) and (i) respectively : y₁ = x³ and y₂ = x] $=\left[\frac{x^2}{2}-\frac{x^4}{4}\right]_0^1=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$ sq. units \therefore Required area = Area BCOB + Area ODAO = $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ sq. units 33. i. x is greater than y, x, $y \in N$ For xRx x > x is not true for any $x \in N$. Therefore, R is not reflexive. Let $(x, y) \in R \Rightarrow xRy$ x > ybut y > x is not true for any $x, y \in N$ Thus, R is not symmetric. Let xRy and yRz x > y and $y > z \Rightarrow x > z$ \Rightarrow xRz So, R is transitive. ii. $x + y = 10, x, y \in N$ $R = \{(x,y) : x+y = 10, x,y \in R\}$ $R = \{(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\} (1, 1) \notin R$ So, R is not reflexive. $(x, y) \in R \Rightarrow (y, x) \in R$ Therefore, R is symmetric. $(1, 9) \in \mathbb{R}, (9, 1) \in \mathbb{R} \Rightarrow (1, 1) \notin \mathbb{R}$ Hence, R is not transitive. iii. Given xy, is square of an integer x, $y \in N$ \Rightarrow R = {(x, y) : xy is a square of an integer x, y \in N} $(x, x) \in \mathbb{R}, \forall x \in \mathbb{N}$ As x^2 is square of an integer for any $x \in N$ Hence, R is reflexive. If $(x, y) \in R \Rightarrow (y, x) \in R$ Therefore, R is symmetric. If $(x, y) \in R (y, z) \in R$ So, xy is square of an integer and yz is square of an integer Let $xy = m^2$ and $yz = n^2$ for some m, $n \in Z$ $x=rac{m^2}{y}$ and $z=rac{x^2}{y}$ $xz = rac{m^2n^2}{y^2}$, Which is square of an integer. So, R is transitive. iv. x + 4y = 10, $x, y \in N$ $R = \{(x, y) : x + 4y = 10, x, y \in N\}$ R{(2, 2), (6, 1)} (1, 1), (3, 3) ∉ R Thus, R is not reflexive. $(6, 1) \in R$ but $(1, 6) \notin R$ Hence, R is not symmetric. $(x, y) \in R \Rightarrow x + 4y = 10$ but $(y, z) \in R$ $y + 4z = 10 \Rightarrow (x, z) \in R$ So, R is transitive. OR i. $R = \{(x, y) : x \text{ is wife of } y\}$

Reflexive: since x can not be wife of x. \therefore (x, x) \notin R

 \Rightarrow R is not reflexive Symmetric: Let $(x, y) \in \mathbb{R}$ \Rightarrow x is wife of y \Rightarrow Y is husband of x \Rightarrow (y, x) \notin R \Rightarrow R is not symmetric Transitive: Let $(x, y) \in R$ and $(y, z) \in R$ \Rightarrow x is wife of y and y is husband of z which is a contradiction \Rightarrow (x, z) \notin R \Rightarrow R is not transitive ii. A be the set of human beings $R = \{(x, y) : x \text{ is father of } y\}$ Reflexive: since x can not be father of x \therefore (x, x) \notin R \Rightarrow R is not reflexive Symmetric: Let $(x, y) \in \mathbb{R}$ \Rightarrow x is father of y \Rightarrow y can not be father of x \Rightarrow (y, x) \notin R \Rightarrow R is not symmetric Transitive: Now, let (x,y), $(y,z) \in \mathbb{R}$ \Rightarrow x is the father of y and y is the father of z. \Rightarrow x is not the father of z. \Rightarrow Indeed x is the grandfather of z. \Rightarrow (x,z) \notin R \Rightarrow R is not transitive. $0 \ 1 \ 2$ 34. $|A| = \begin{vmatrix} 1 & 2 & 3 \end{vmatrix} = -1(1-9)+2(1-6) = 8-10$ $|3 \ 1 \ 1|$ $|A| = -2 \neq 0 \Rightarrow A^{-1}$ exists Now, $A_{11} = -1$, $A_{12} = 8$, $A_{13} = -5$ A₂₁ = 1, A₂₂ = -6, A₂₃ = 3 A₃₁ = -1 , A₃₂ = 2, A₃₃ = -1 $adj A = \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$ -1 2 $\mathbf{A}^{-1} = \frac{1}{|A|} \operatorname{adj} \mathbf{A} = \frac{-1}{2}$ 8 -6-5 3 Given system of equations are y + 2z = 5, x + 2y + 3z = 10, 3x + y + z = 9 $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$ 5It can be written as 1 $2 \ 3$ y = 10or AX = B, $\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$ 9 where A = $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 5 \\ 10 \\ 9 \end{bmatrix}$ Now $AX = B \Rightarrow X = A^{-1}B$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 10 \\ 9 \end{bmatrix}$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} -4 \\ -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

$$\therefore x = 2, y = 1, z = 2$$

35. Here, it is given that the equation of line

$$L_1: \frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-2}$$

 $L_1: \frac{1}{-1} = \frac{1}{-2}$ Lines L_1 is passing through point (1, -2, 3) and has direction (-1, 1, -2)

Thus, vector equation of line L_1 is

$$egin{aligned} &ec{\mathbf{r}} = (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda(-\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}) \\ & ext{And} \\ & ext{L}_2: rac{\mathbf{x}-1}{2} = rac{\mathbf{y}+1}{2} = rac{\mathbf{z}+1}{-2} \end{aligned}$$

Line L_2 is passing through point (1, -1, -1) and has direction ratios (2, 2, -3)

Thus, vector equation of line L_2 is

Thus, recurrence equation of min
$$2_2$$
 is
 $\vec{r} = (\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + 2\hat{j} - 2\hat{k})$
Now, to calculate distance between the lines,
 $\vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(-\hat{i} + \hat{j} - 2\hat{k})$
 $\vec{r} = (\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + 2\hat{j} - 2\hat{k})$
Here,
 $\vec{a}_1 = i - 2\hat{j} + 3\hat{k}$
 $\vec{b}_1 = -\hat{i} + \hat{j} - 2\hat{k}$
 $\vec{a}_2 = \hat{1} - \hat{j} - \hat{k}$
 $\vec{b}_2 = 2\hat{i} + 2\hat{j} - 2\hat{k}$
Thus,
 $\vec{r} = (\hat{i} - 2 + 4) - j(2 + 4) + \hat{k}(-2 - 2)$
 $\therefore \vec{b}_1 \times \vec{b}_2 = |\hat{k} - 1 - 1 - 2|$
 $= \sqrt{4 + 36 + 16}$
 $= \sqrt{56}$
 $\vec{a}_2 - \vec{a}_1 = (1 - 1)\hat{i} + (-1 + 2)\hat{j} + (-1 - 3)\hat{k}$
 $\therefore \vec{a}_2 - \vec{a}_1 = 0\hat{i} + \hat{j} - 4\hat{k}$
Now, we have
 $(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) = (2\hat{i} - 6\hat{j} - 4\hat{k}) \cdot (0\hat{i} + \hat{j} - 4\hat{k})$
 $= (2 \times 0) + ((-6) \times 1) + ((-4) \times (-4))$
 $= 0 - 6 + 16$

Therefore, the shortest distance between the given line is

$$\mathbf{d} = \begin{vmatrix} \overrightarrow{(\mathbf{b}_1 \times \mathbf{b}_2) \cdot (\mathbf{a}_2 - \mathbf{a}_1)} \\ \overrightarrow{\mathbf{b}_1 \times \mathbf{b}_2} \end{vmatrix}$$
$$\Rightarrow \mathbf{d} = \begin{vmatrix} \overrightarrow{\mathbf{10}} \\ \sqrt{56} \end{vmatrix}$$
$$\Rightarrow d = \frac{10}{\sqrt{56}}$$
$$\therefore d = \frac{10}{\sqrt{56}} \text{ units}$$

Suppose,

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$$

So the foot of the perpendicular is $(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$

OR

The direction ratios of the perpendicular is

 $(2\lambda+1-5):(3\lambda+2-9):(4\lambda+3-3)$ $\Rightarrow (2\lambda - 4) : (3\lambda - 7) : (4\lambda)$ Direction ratio of the line is 2:3:4 (5, 9, 3) $=\frac{y-2}{3}=\frac{z-3}{4}$ (α, β, γ)

From the direction ratio of the line and the direct ratio of its perpendicular, we have $2(2\lambda - 4) + 3(3\lambda - 7) + 4(4\lambda) = 0$

 $\Rightarrow 4\lambda - 8 + 9\lambda - 21 + 16\lambda = 0$

 $\Rightarrow 29\lambda = 29$

$$\Rightarrow \lambda = 1$$

Therefore, the foot of the perpendicular is (3, 5, 7)

The foot of the perpendicular is the mid-point of the line joining (5, 9, 3) and (α, β, γ)

Therefore, we have

$$rac{lpha+5}{2} = 3 \Rightarrow lpha = 1$$
 $rac{eta+9}{2} = 5 \Rightarrow eta = 1$
 $rac{y+3}{2} = 7 \Rightarrow \gamma = 11$

Therefore, the image is (1, 1, 11)

Section E

36. i. Let A represents obtaining a sum greater than 9 and B represents black die resulted in a 5.

n(S) = 36 $n(A) = \{(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)\} = 6$ $n(B) = \{(5, 1), (5, 2), (5, 3), (5, 4), (5, 5)\} = 6$ $n(A \cap B) = \{(5, 5), (5, 6)\} = 2$ $P(A \cap B)$ n(S)P(A/B) =n(B)

n(S)

ii. Let A represents obtaining a sum 8 and B represents red die resulted in number less than 4.

n(S) = 36 $n(A) = \{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2) = 5\}$ $n(B) = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 1), (6, 2), (6, 1), (6, 2), (6, 1), (6, 2), (6, 1), (6, 2), (6,$ 3) = 18 $n(A \cap B) = \{(5, 3), (6, 2)\} = 2$ $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{n(A \cap B)}{n(S)}}{\frac{n(B)}{(S)}} = \frac{\frac{2}{36}}{\frac{18}{36}} = \frac{1}{9}$ n(S)

iii. Let A represents obtaining a sum 10 and B represents black die resulted in even number.

n(S) = 36 $n(A) = \{(4, 6), (6, 4), (5, 5)\} = 3$ $n(B) = \{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6,$ $6)\} = 18$ $n(A \cap B) = \{(4, 6), (6, 4)\} = 2$ $\frac{P(A \cap B)}{P(B)} = \frac{\frac{n(A \cap D)}{n(S)}}{\frac{n(B)}{(S)}} = \frac{\frac{2}{36}}{\frac{18}{36}} = \frac{1}{9}$ P(A/B) =OR

Let A represents getting doublet and B represents red die resulted in number greater than 4. n(S) = 36 n(A) = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} = 6 n(B) = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 5), (5, 6), (6, 5), (6, 6)} = 12 n(A \cap B) = {(4, 4), (5, 5), (6, 6)} = 3 P(A/B) = $\frac{P(A \cap B)}{P(B)} = \frac{\frac{n(A \cap B)}{n(S)}}{\frac{n(B)}{n(S)}} = \frac{\frac{3}{36}}{\frac{12}{36}} = \frac{1}{4}$

- 37. i. Here (5, 3) are the coordinates of B.
 - \therefore Position vector of B = $5\hat{i} + 3\hat{j}$
 - ii. Here (9, 8) are the coordinates of D.
 - \therefore Position vector of D = 9 \hat{i} + 8 \hat{j}
 - iii. Position vector of B = $5\hat{i} + 3\hat{j}$ and Position vecto of C = $6\hat{i} + 5\hat{j}$

 $\overrightarrow{BC} = (6-5)\hat{i} + (5-3)\hat{j} = \hat{i} + 2\hat{j}$ **OR**Since P.V. of A = $2\hat{i} + 2\hat{j}$, P.V. of D = $9\hat{i} + 8\hat{j}$ $\overrightarrow{AD} = (9-2)\hat{i} + (8-2)\hat{j} = 7\hat{i} + 6\hat{j}$ $\overrightarrow{AD}|^2 = 7^2 + 6^2 = 49 + 36 = 85$ $\Rightarrow |\overrightarrow{AD}| = \sqrt{85} \text{ units}$

38. i. Let 'y' be the breadth and 'x' be the length of rectangle and 'a' is radius of given circle.

From fig
$$4a^2 = x^2 + y^2$$

 $\Rightarrow y^2 = 4a^2 - x^2$
 $\Rightarrow y = \sqrt{4a^2 - x^2}$
Perimeter (P) = 2x + 2y = 2 $\left(x + \sqrt{4a^2 - x^2}\right)$

ii. We know that P = $2\left(x + \sqrt{4a^2 - x^2}\right)$

Critical points to maximize perimeter $\frac{dP}{dr} = 0$

$$\Rightarrow \frac{dp}{dx} = 2\left(1 + \frac{1}{2\sqrt{4a^2 - x^2}}\left(-2x\right)\right)$$
$$2\left(\frac{\sqrt{4a^2 - x^2} - x}{\sqrt{4a^2 - x^2}}\right) = 0$$
$$\Rightarrow \sqrt{4a^2 - x^2} = x$$
$$\Rightarrow 4a^2 - x^2 = x^2$$
$$\Rightarrow 2a^2 = x^2$$
$$\Rightarrow x = \pm\sqrt{2a}$$

when x =
$$\sqrt{2a}$$
, y = $\sqrt{2a}$

when x = $-\sqrt{2a}$ not possible as 'x' is length critical point is $(\sqrt{2a}, \sqrt{2a})$

iii.
$$\frac{dp}{dx} = 2\left(1 + \frac{1}{2\sqrt{4a^2 - x^2}}(-2x)\right)$$
$$\frac{d^2P}{dx^2} = -2\left(\frac{\sqrt{4a^2 - x^2} - (x)\left(\frac{-2x}{2\sqrt{4^2 - x^2}}\right)}{(4a^2 - x^2)}\right)$$
$$= -2\left(\frac{(4a^2 - x^2) + x^2}{(4a^2 - x^2)^{3/2}}\right)$$
$$\Rightarrow \frac{d^2P}{dx^2}\Big]_{x=a\sqrt{2}} = -2\left(\frac{4a^2}{(4a^2 - 2a^2)^{3/2}}\right) = \frac{-2}{(2\sqrt{2})a} < 0$$

Perimeter is maximum at a critical point.

OR

From the above results know that $x = y = \sqrt{2}a$ a = radius Here, x = y = $10\sqrt{2}$ Perimeter = P = 4 × side = $40\sqrt{2}$ cm