

SATISH SCIENCE ACADEMY

**DHANORI PUNE-411015** 

## MATHEMATICS

## **MHT - CET - Mathematics**

## Time Allowed: 1 hour and 30 minutes

Maximum Marks: 100

| 1. | If $\sin	heta$ = $rac{12}{13}$ , $\left(0<	heta<rac{\pi}{2} ight)$ and $\cos\phi=-rac{3}{5}$ , $\left(\pi<\phi<rac{3\pi}{2} ight)$ , then $\sin\left(	heta+\phi ight)$ will be |                                                                            |     |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|--|--|--|
|    | a) $\frac{-56}{61}$                                                                                                                                                                | b) $\frac{-56}{65}$                                                        |     |  |  |  |
|    | C) $\frac{1}{65}$                                                                                                                                                                  | d) -56                                                                     |     |  |  |  |
| 2. | The points (1, 3) and (5, 1) are the opposite vertices of                                                                                                                          | of a rectangle. The other two vertices lie on the line $y = 2x + 2x$       | [2] |  |  |  |
|    | c, then the value of c will be                                                                                                                                                     |                                                                            |     |  |  |  |
|    | a) 4                                                                                                                                                                               | b) -2                                                                      |     |  |  |  |
|    | c) -4                                                                                                                                                                              | d) 2                                                                       |     |  |  |  |
| 3. | The area of triangle formed by the tangent, normal dr                                                                                                                              | awn at (1, $\sqrt{3}$ ) to the circle $x^2 + y^2 = 4$ and positive X-axis, | [2] |  |  |  |
|    | is                                                                                                                                                                                 |                                                                            |     |  |  |  |
|    | a) $4\sqrt{3}$                                                                                                                                                                     | b) $2\sqrt{3}$                                                             |     |  |  |  |
|    | c) $\sqrt{3}$                                                                                                                                                                      | d) 3√3                                                                     |     |  |  |  |
| 4. | The equation of a circle whose diameter is the line joining the points (-4, 3) and (12, -1) is                                                                                     |                                                                            |     |  |  |  |
|    | a) $x^2 + y^2 + 8x + 2y + 51 = 0$                                                                                                                                                  | b) $x^2 + y^2 - 8x - 2y - 51 = 0$                                          |     |  |  |  |
|    | c) $x^2 + y^2 + 8x + 2y - 51 = 0$                                                                                                                                                  | d) $x^2 + y^2 + 8x - 2y - 51 = 0$                                          |     |  |  |  |
| 5. | A bag A contains 2 white and 3 red balls and bag B c                                                                                                                               | ontains 4 white and 5 red balls. One ball is drawn at                      | [2] |  |  |  |
|    | random from a randomly chosen bag and is found to be red. The probability that it was drawn from bag B                                                                             |                                                                            |     |  |  |  |
|    | a) $\frac{5}{18}$                                                                                                                                                                  | b) $\frac{25}{52}$                                                         |     |  |  |  |
|    | c) $\frac{5}{14}$                                                                                                                                                                  | d) $\frac{5}{16}$                                                          |     |  |  |  |
| 6. | If 1, $\omega$ , $\omega^2$ , $\omega^{n-1}$ are the n <sup>th</sup> roots of unity,                                                                                               | then $(2 - \omega)(2 - \omega^2)$ $(2 - \omega^{n - 1})$ is equal to       | [2] |  |  |  |
|    | a) 1                                                                                                                                                                               | b) 2 <sup>n</sup> - 1                                                      |     |  |  |  |
|    | c) $2^{n} + 1$                                                                                                                                                                     | d) 2 <sup>n</sup>                                                          |     |  |  |  |
| 7. | Everybody in a room shakes hand with everybody els                                                                                                                                 | e. The total number of hand shakes is 66. The total number                 | [2] |  |  |  |
|    | of persons in the room is                                                                                                                                                          |                                                                            |     |  |  |  |
|    | a) 14                                                                                                                                                                              | b) 12                                                                      |     |  |  |  |
|    | c) 11                                                                                                                                                                              | d) 13                                                                      |     |  |  |  |
| 8. | There are 10 lamps in a hall each one of them can be                                                                                                                               | switched on independently. The number of ways in which                     | [2] |  |  |  |
|    | the hall can be illuminated.                                                                                                                                                       |                                                                            |     |  |  |  |

2/6

a) 
$$\frac{d_{1}}{b_{1}}$$
 (b)  $\frac{b_{1}}{c}$  (c)  $\frac{d_{1}}{b_{2}}$  (c)  $\frac{d_{1}}{b_{2}}$  (c)  $\frac{d_{2}}{b_{2}}$  (c)  $\frac{d_{1}}{b_{2}}$  (c)  $\frac{d_{2}}{b_{2}}$  (c)  $\frac{d_{1}}{b_{2}}$  (c)  $\frac{d_{2}}{b_{2}}$  (c)  $\frac{d_{1}}{b_{2}}$  (c)  $\frac{d_{2}}{b_{2}}$  (c)

3/6

 $=(\hat{lpha}\cdot\hat{\gamma})\hat{eta}-(\hat{lpha}\cdot\hat{eta})\hat{\gamma}$  . If  $\hat{eta}$  is not parallel to  $\hat{\gamma}$ , then the angle between  $\hat{lpha}$  and  $\hat{eta}$  is a)  $\frac{5\pi}{6}$ b)  $\frac{2\pi}{3}$ c)  $\frac{\pi}{3}$ d)  $\frac{\pi}{6}$ The angle between the lines represented by the equation  $(x^2 + y^2) \sin \theta + 2xy = 0$  is [2] 27. a)  $\frac{\theta}{2}$ b) θ c)  $\frac{\pi}{2} - \frac{\theta}{2}$ d)  $\frac{\pi}{2} - \theta$ The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle  $\frac{\pi}{4}$  with 4 plane x + y = 3, are 28. [2] a) 1, 1, 2 b) 1, 1,  $\sqrt{2}$ c)  $\sqrt{2}$ , 1, 1 d) 1,  $\sqrt{2}$ , 1 The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and 29. [2] equally inclined to the axes is b) x + 1 = y - 3 = z + 2a) x + 3 = y - 3 = z + 4d) x + 5 = y + 3 = z + 6c) x - 3 = y + 3 = z - 430. Find the linear inequations for which the shaded area in the following figure is the solution set: [2] y = 2a) x - y  $\geq$  1, 2x + y  $\geq$  2, x + 2y  $\geq$  8, x  $\geq$  0, y b) x - y  $\leq$  1, 2x + y  $\geq$  2, x + 2y  $\leq$  8, x  $\geq$  0, y d)  $x + y \le 1$ ,  $2x + y \ge 2$ ,  $x - 2y \ge 8$ ,  $x \le 0$ , yc)  $x+y \geq 1,$   $2x+y \leq 2,$   $x+2y \geq 8,$   $x \geq 0,$  yIf  $y = \sqrt{\frac{1+\tan x}{1-\tan x}}$ , then  $\frac{dy}{dx} =$ [2] 31. a)  $\frac{1}{2}\sqrt{\frac{1-\tan x}{1+\tan x}} \cdot \sec\left(\frac{\pi}{4}+x\right)$ b)  $\frac{1}{2}\sqrt{\frac{1-\tan x}{1+\tan x}} \cdot \sec^2\left(\frac{\pi}{4}+x\right)$ c)  $\sqrt{rac{1- an x}{1+ an x}} \cdot ext{sec}ig(rac{\pi}{4}+xig)$ d)  $\sqrt{\frac{1-\tan x}{1+\tan x}} \cdot \sec^2\left(\frac{\pi}{4}+x\right)$ If  $x = t \log t$ ,  $y = t^t$ , then  $\frac{dy}{dx} =$ [2] 32. a) 1 + log t b) ex d)  $\frac{e^t}{1+\log t}$ c) et Differential coefficient of  $\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)$  w.r.t.  $\sin^{-1} x$  is [2] 33. b)  $\frac{1}{2}$ a) 1 c)  $\frac{3}{2}$ d) 2 If  $y = \log\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)$ , then  $\frac{dy}{dx}$  is equal to [2] 34. a) sec 2x b) tan x

4/6

|     | c) tan 2x                                                                                                    | d) sec x                                                                            |     |
|-----|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|
| 35. | The point on the curve $x^2 = 3 - 2y$ , where the tangent                                                    | is parallel to $x + y = 2$ , is                                                     | [2] |
|     | a) (-1, 3)                                                                                                   | b) ( $\sqrt{3}$ , 0)                                                                |     |
|     | c) (3, -3)                                                                                                   | d) (1, 1)                                                                           |     |
| 36. | The approximate value of $\cot^{-1}(1.001)$ is                                                               |                                                                                     | [2] |
|     | a) 0.7890                                                                                                    | b) 0.7865                                                                           |     |
|     | c) 0.7845                                                                                                    | d) 0.7895                                                                           |     |
| 37. | If log 3 = 1.0986, then the greatest value of the function                                                   | on $f(x) = \tan^{-1} x - \frac{1}{2} \log x$ in $(\frac{1}{\sqrt{3}}, \sqrt{3})$ is | [2] |
|     | a) $\frac{\pi}{6} - \frac{1}{4} \log 3$                                                                      | b) $\frac{\pi}{3} - \frac{1}{4} \log 3$                                             |     |
|     | c) $\frac{\pi}{3} + \frac{1}{2} \log 3$                                                                      | d) $\frac{\pi}{6} + \frac{1}{4} \log 3$                                             |     |
| 38. | $\int x^{51} (\tan^{-1}x + \cot^{-1}x) dx =$                                                                 |                                                                                     | [2] |
|     | a) $\frac{x^{52}}{52}$ (tan <sup>-1</sup> x + cot <sup>-1</sup> x) + c                                       | b) $\frac{x^{52}}{52}$ (tan <sup>-1</sup> x - cot <sup>-1</sup> x) + c              |     |
|     | c) $\frac{\pi x^{52}}{104} + \frac{\pi}{2} + c$                                                              | d) $\frac{\pi x^{52}}{52} + \frac{\pi}{2} + c$                                      |     |
| 39. | If $\int \frac{\sin 2x}{\sin 5x \sin 3x}  dx = \frac{1}{3} \log  \sin 3x  - \frac{1}{5} \log  f(x)  + c$ , t | hen $f(x) = $                                                                       | [2] |
|     | a) sin 2x                                                                                                    | b) sin 5x                                                                           |     |
|     | c) sin 4x                                                                                                    | d) sin 6x                                                                           |     |
| 40. | $\int \frac{1}{x^2} (2x+1)^3  \mathrm{d}x =$                                                                 |                                                                                     | [2] |
|     | a) $4x^2 + 12x + 6 \log x - \frac{1}{x} + c$                                                                 | b) $2x^2 + 8x + 3 \log x - \frac{2}{x} + c$                                         |     |
|     | c) $4x^2 + 12x - 6 \log x - \frac{2}{x} + c$                                                                 | d) $8x^2 + 6x + 6\log x + \frac{2}{x} + c$                                          |     |
| 41. | If $\int \frac{1}{f(x)} dx = \log \{f(x)\}^2 + c$ , then $f(x)$ is equal to                                  |                                                                                     | [2] |
|     | a) $x^2 + \alpha$                                                                                            | b) $\frac{x}{2} + \alpha$                                                           |     |
|     | c) x + $\alpha$                                                                                              | d) $2x + \alpha$                                                                    |     |
| 42. | The area of the region bounded by parabola $y^2 = 16x$                                                       | and its latus rectum is square units.                                               | [2] |
|     | a) $\frac{128}{3}$                                                                                           | b) $\frac{16}{3}$                                                                   |     |
|     | C) $\frac{64}{3}$                                                                                            | d) $\frac{256}{3}$                                                                  |     |
| 43. | Let $y = y(x)$ be the solution of the differential equation                                                  | on, $(y^2 - x) \frac{dy}{dx} = 1$ , satisfying $y(0) = 1$ . This curve intersects   | [2] |
|     | the X-axis at a point whose abscissa is                                                                      |                                                                                     |     |
|     | a) 2                                                                                                         | b) 2 + e                                                                            |     |
|     | c) 2 - e                                                                                                     | d) -e                                                                               |     |
| 44. | The solution of the equation $rac{\mathrm{d}y}{\mathrm{d}x} + \sqrt{rac{1-y^2}{1-x^2}} = 0$ is             |                                                                                     | [2] |
|     | a) $x\sqrt{1-y^2} + y\sqrt{1-x^2} = c$                                                                       | b) None of these                                                                    |     |
|     | c) $x\sqrt{1+y^2} + y\sqrt{1+x^2} = c$                                                                       | d) $x\sqrt{1-y^2} - y\sqrt{1-x^2} = c$                                              |     |

The differential equation of all straight lines passing through the origin is 45.

a) 
$$\frac{dy}{dx} = \frac{y}{x}$$
  
b)  $x + y \frac{dy}{dx} = 0$   
c)  $y = \sqrt{x \frac{dy}{dx}}$   
d)  $\frac{dy}{dx} = y + x$ 

For the following distribution function F(x) of a r.v. X 46.

| For the following d                                                                  | istribution fun       | ction F(x) of a r.v  | . Х                                               |                                                               |                      |         | [2] |  |
|--------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------------|---------------------------------------------------------------|----------------------|---------|-----|--|
| X                                                                                    | 1                     | 2                    | 3                                                 | 4                                                             | 5                    | 6       |     |  |
| F(X)                                                                                 | 0.2                   | 0.37                 | 0.48                                              | 0.62                                                          | 0.85                 | 1       |     |  |
| $P(3 < X \le 5) =$                                                                   | a,                    |                      | 1                                                 | a                                                             |                      |         |     |  |
| a) 0.48                                                                              |                       |                      | b) 1.47                                           | ~                                                             |                      |         |     |  |
| c) 0.37                                                                              |                       |                      | d) 0.27                                           |                                                               |                      |         |     |  |
| If the probability fu                                                                | nction of a rai       | ndom variable X i    | s defined by P(X                                  | $=$ k) $=$ a $\left(\frac{k+1}{2^k}\right)$ fo                | r k = 0, 1, 2, 3, 4, | 5, then | [2] |  |
| the probability that                                                                 | X takes a prin        | ne value is          |                                                   |                                                               |                      |         |     |  |
| a) $\frac{13}{20}$                                                                   |                       |                      | b) $\frac{23}{60}$                                |                                                               |                      |         |     |  |
| c) $\frac{19}{60}$                                                                   |                       |                      | d) $\frac{11}{20}$                                | λ.                                                            |                      |         |     |  |
| A random variable                                                                    | X takes values        | s -1, 0, 1, 2 with p | robabilities $\frac{1+3p}{4}$                     | $,rac{1-\mathrm{p}}{4},rac{1+2p}{4},rac{1-4\mathrm{p}}{4}$ | respectively, whe    | ere p   | [2] |  |
| varies over R. Then the minimum and maximum values of the mean of X are respectively |                       |                      |                                                   |                                                               |                      |         |     |  |
| a) $-\frac{1}{16}$ and $\frac{5}{16}$                                                |                       |                      | b) $-\frac{1}{16}$ and -                          | $\frac{5}{4}$                                                 |                      |         |     |  |
| c) $-\frac{7}{4}$ and $\frac{5}{16}$                                                 |                       |                      | d) $-\frac{7}{4}$ and $\frac{1}{2}$               |                                                               |                      |         |     |  |
| A r.v. X ~ B (n, p).                                                                 | If values of m        | ean and variance     | of X are 18 and 12                                | 2 respectively ther                                           | total number of p    | ossible | [2] |  |
| values of X are                                                                      |                       |                      |                                                   |                                                               |                      |         |     |  |
| a) 55                                                                                | ~                     | 2                    | b) 54                                             |                                                               |                      |         |     |  |
| c) 12                                                                                |                       | Ý /                  | d) 18                                             |                                                               |                      |         |     |  |
| Probability that a p                                                                 | erson will dev        | elop immunity aft    | er vaccination is (                               | ).8. If 8 people are                                          | e given the vaccine  | e then  | [2] |  |
| probability that all                                                                 | develop immu          | nity is              | /                                                 |                                                               |                      |         |     |  |
| a) 1                                                                                 | <b>D</b> <sup>Y</sup> | Y                    | b) <sup>8</sup> C <sub>6</sub> (0.2) <sup>6</sup> | $(0.8)^2$                                                     |                      |         |     |  |

c) (0.8)<sup>8</sup>

47.

48.

49.

50.

d) (0.2)<sup>8</sup>

[2]