

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

MATHEMATICS

MHT - CET - Mathematics

Time Allowed: 1 hour and 30 minutes

c) Obtuse

2.

7.

- 1. If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then θ is
 - a) $\frac{n\pi}{2}$ d) <u>n</u>π c) $n\pi$ The triangle formed by the lines x + y - 4 = 0, 3x + y = 4, x + 3y = 4 is [2] a) equilateral b) isosceles

d) right-angled

- 3. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the [2] equation of the circle is
 - a) $x^2 + y^2 2x + 2y 23 = 0$ d) $x^2 + y^2 + 2x - 2y - 23 = 0$ c) $x^2 + y^2 - 2x - 2y - 23 = 0$
- [2] The equation of the circle whose radius is 5 and which touches the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ externally at 4. the point (5, 5), is
 - a) $x^2 + y^2 18x 16y + 120 = 0$ b) $x^2 + y^2 + 18x - 16y + 120 = 0$ d) $x^2 + y^2 + 18x + 16y - 120 = 0$ c) $x^2 + y^2 - 18x - 16y - 120 = 0$
- Let A, B and C be three events such that P(A) = 0.3, P(B) = 0.4, P(C) = 0.8, $P(A \cap B) = 0.08$, $P(A \cap C) = 0.28$, 5. [2] $P(A \cap B \cap C) = 0.09$. If $P(A \cup B \cup C) \ge 0.75$, then $P(B \cap C)$ satisfies
 - a) $P(B \cap C) \le 0.23$ b) $0.23 < P(B \cap C) > 0.48$ c) $P(B \cap C) < 0.48$ d) $0.23 \le P(B \cap C) \le 0.48$
- If $z = (3\sqrt{7} + 4i)^2 (3\sqrt{7} 4i)^3$, then Re(z) = 6.
 - b) $79 \times 3\sqrt{7}$ a) $(79)^2 (3\sqrt{7} - 4i)$ c) $(79)^2 3\sqrt{7}$ d) $-4(79)^2$
 - Three different prizes are to be distributed in a class of 20 boys. In how many ways can this be done, if a boy is eligible to get any number of prizes.
 - a) 6480 b) 8000 c) 7220 d) 6840
- 8. There are four teachers and five classes in a school. One teacher teaches only one class at a time. In how many [2] ways can the teachers choose the classes?

Maximum Marks: 100

[2]

b) $x^2 + y^2 + 2x - 2y + 23 = 0$

[2]

[2]

	a) 16	b) 120	
	c) 60	d) 14	
9.	If $f(x) = 3x - 5$, then $f^{-1}(x)$ is		[2]
	a) Does not exist because f is not onto	b) Does not exist because f is not one-one	
	c) Is given by $\frac{x+5}{3}$	d) $\frac{1}{3x-5}$	
10.	If f(x) = $rac{\sin(e^{x-3}-1)}{\log(x-2)}$, then $\lim_{x ightarrow 3}f(x)=$		[2]
	a) -2	b) 0	
	c) -1	d) 1	
11.	If $f(x)= egin{cases} rac{x}{rac{1}{e^x}+1}, ext{ when } x eq 0 \ 0, ext{ when } x=0 \end{cases}$, then		[2]
	a) $f(x)$ is not continuous at $x = 0$	b) $\lim_{x \to 0^{-}} f(x) = 1$	
	c) $f(x)$ is continuous at $x = 0$	d) $\lim_{x \to 0^+} f(x) = 1$	
12.	The negation of the statement 72 is divisible by 2 and	d 3 is	[2]
	a) 72 is not divisible by 2 and 3.	b) 72 is divisible by 2 and 72 is divisible by 3.	
	c) 72 is divisible by 2 or 72 is divisible by 3.	d) 72 is not divisible by 2 or 72 is not divisible	
13.	If $A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$, where A_{11}, A_{12}, A_{13} , $a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} =$	by 3. are co-factors of a_{11} , a_{12} , a_{13} respectively, then the value of	[2]
14.	a) 0 c) 1 If $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{bmatrix}$, then adj A is equal to a) 64	 b) -1 d) ¹/₂ b) 12 	[2]
	c) 72	d) 144	
15.	Which one of the following is true?		[2]
	a) $tan (sin^{-1} x) = sin (tan^{-1} x)$	b) $\cos(\tan^{-1} x) = \tan(\cos^{-1} x)$	
	c) sec $(\tan^{-1} x) = \tan(\sec^{-1} x)$	d) $\sin(\cos^{-1} x) = \cos(\sin^{-1} x)$	
16.	In a $\triangle ABC$, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ and the side a = 2	, then area of the triangle is	[2]
	a) $\sqrt{3}$	b) 2	
	c) 1	d) $\frac{\sqrt{3}}{2}$	
17.	If the angles of a triangle ABC be in A.P., then		[2]
	a) $c^2 = a^2 + b^2 - ab$	b) $b^2 = a^2 + c^2 - ac$	

2/6

	c) $a^2 = b^2 + c^2 - ac$	d) $b^2 = a^2 + c^2$	
18.	If $\cot^{-1} x + \cot^{-1} y + \cot^{-1} z = \frac{\pi}{2}$, then $x + y + z$ is equa	al to	[2]
	a) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$	b) $x^2 + y^2 + z^2$	
	c) xyz	d) $xy + yz + zx$	
19.	The value of $\int\limits_{0}^{1} x^2 e^x \mathrm{dx}$ is equal to		[2]
	a) e - 2	b) _e ²	
	c) _{e² - 2}	d) e + 2	
20.	If $f(x) = \begin{vmatrix} \sin x + \sin 2x + \sin 3x & \sin 2x & \sin 3x \\ 3 + 4 \sin x & 3 & 4 \sin x \\ 1 + \sin x & \sin x & 1 \end{vmatrix}$	Then $\int_{0}^{\frac{\pi}{2}} f(x) \mathrm{d}x =$	[2]
	a) 0	b) $\frac{1}{3}$	
21.	c) 3 The value of $\int_{3}^{5} \frac{x^2}{x^2 - 4} dx$ is	d) $\frac{2}{3}$	[2]
	a) $2 + 4 \log_e 3 - 4 \log_e 7 + 4 \log_e 5$	b) $2 + \log_{e}\left(\frac{15}{7}\right)$	
	c) 2 - $\tan^{-1}\left(\frac{15}{7}\right)$	d) 2 - $\log_e\left(\frac{15}{7}\right)$	
22.	$\int_{0}^{\frac{\alpha}{3}} \frac{f(x)}{f(x) + f\left(\frac{\alpha - 3x}{3}\right)} dx =$		[2]
	a) $\frac{2\alpha}{3}$	b) $\frac{\alpha}{2}$	
	c) $\frac{\alpha}{6}$	d) $\frac{\alpha}{3}$	
23.	A unit vector perpendicular to the plane containing the	e vectors $\hat{i}+2\hat{j}+\hat{k}$ and $-2\hat{i}+\hat{j}+3\hat{k}$ is	[2]
	a) $\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$	b) $\frac{-\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$	
	c) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$	d) $\frac{-\hat{i}-\hat{j}-\hat{k}}{\sqrt{3}}$	
24.	If the position vectors of the points A, B, C are \vec{a} , \vec{b} are	nd $3\vec{\mathrm{a}}-2\vec{\mathrm{b}}$ respectively, then the points A, B, C are	[2]
	a) Forming a right angled triangle	b) Coplanar	
	c) Collinear	d) Non-collinear	
25.	If A(a, 2, 2), B(a, b, 1) and C(1, 2, -2) are the vertices of a, b and c are	of triangle ABC and G(2, 1, c) is its centroid, then values	[2]
	a) $a = -1$, $b = 1$, $c = \frac{3}{2}$	b) $a = \frac{1}{2}$, $b = 1$, $c = 1$	
	c) $a = \frac{1}{2}, b = \frac{1}{2}, c = -1$	d) $a = \frac{5}{2}, b = -1, c = \frac{1}{3}$	
26.	If the points (1, 0), (0, 1) and (x, 8) are collinear, then	the value of x is equal to	[2]
	a) -7	b) 5	
	c) -6	d) 6	
27.	If slope of one of the lines $ax^2 + 2hxy + by^2 = 0$ is 5 ti	imes that of the other, then $5h^2 =$	[2]
		C 0120046702	3/

CONTACT:8830597066 | 9130946703

6

	a) 9ab	b) 2ab	
	c) ab	d) 7ab	
28.	If the planes $3x - 2y + 2z + 17 = 0$ and $4x + 3y - kz - 2y + 2z + 17 = 0$	25 are mutually perpendicular, then k =	[2]
	a) -3	b) 3	
	c) 9	d) -6	
29.	If the points (1, 1, k) and (-3, 0, 1) are equidistant from	m the plane $3x + 4y - 12z + 13 = 0$, then k =	[2]
	a) 2	b) 3	
	c) 0	d) 1	
30.	The coordinates of the corner points of the bounded f maximum of objective function $z = 60x + 10y$ is	easible region are (10, 0), (2, 4), (1, 5) and (0, 8). The	[2]
	a) 800	b) 600	
	c) 110	d) 700	
31.	If $y = \tan^{-1}\left(\frac{e^{2x}+1}{e^{2x}-1}\right)$, then $\frac{dy}{dx}$ is		[2]
	a) $-\frac{2e^{2x}}{1+e^{2x}}$	b) $\frac{e^{2x}}{1-e^{2x}}$	
32.	If $x = \frac{1-t^2}{1+t^2}$ and $y = \frac{2t}{1+t^2}$, then $\frac{dy}{dx} =$	$(1) = \frac{1}{1+e^{4x}}$	[2]
	a) $\frac{-y}{x}$	b) $\frac{x}{y}$ d) $\frac{y}{y}$	
33.	If $y = \tan^{-1}\left[\frac{\log x}{\log \frac{e}{x}}\right] + \tan^{-1}\left[\frac{8 - \log x}{1 + 8\log x}\right]$, then $\frac{d^2y}{dx^2}$ i	s	[2]
	a) $\frac{1}{2}$	b) 1	
34.	If $\sqrt{1-x^6}+\sqrt{1-y^6}=a^3\left(x^3-y^3 ight)$, then $rac{\mathrm{d}y}{\mathrm{d}x}=$		[2]
	a) $\frac{x^2}{y^2} \sqrt{\frac{1-x^6}{1-y^6}}$	b) $\frac{y^2}{x^2} \sqrt{\frac{1-y^6}{1-x^6}}$	
	C) $\frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$	d) $\frac{x^3}{y^3} \sqrt{\frac{1-x^4}{1-y^4}}$	
35.	The points on the curve $y = 12x - x^3$ at which the grad	dient is zero are	[2]
	a) (2, -16), (-2, 16)	b) (0, 2), (2, 16)	
	c) (2, 16), (-2, -16)	d) (0, -2), (2, -16)	

36. The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average [2] weight of a fish. If n and w change with time t as $n = 2t^2 + 3$ and $w = t^2 - 1 + 2$, then the rate of change of W with respect to t at t = 1 is

a) 13	b) 5
-------	------

c) 1 d) 8

37. The distance in seconds, described by a particle in t seconds is given by $s = ae^{t} + \frac{b}{e^{t}}$. Then acceleration of the [2]

4/6

a) Proportional to t b) Proportional to v c) s d) Constant If $\int \frac{dx}{1+\sin x} = \tan(\frac{x}{2} + a) + b$, then 38. [2] a) $a = \frac{\pi}{4}$, b = 3b) $a = -\frac{\pi}{4}$, b = arbitrary constantd) a = $\frac{\pi}{4}$, b = arbitrary constant c) a = $-\frac{\pi}{4}$, b = 3 $\int \sqrt{\tan x} \, \mathrm{d}x =$ 39. [2] a) $\frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{x^2-1}{\sqrt{2x}}\right) + \frac{1}{\sqrt{2}} \log \left|\frac{x^2-\sqrt{2x+1}}{x^2+\sqrt{2x+1}}\right| + c$ b) $\frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{\tan x-1}{\sqrt{2\tan x}}\right) + \frac{1}{2\sqrt{2}} \log \left|\frac{\tan x-\sqrt{2\tan x}+1}{\tan x+\sqrt{2\tan x}+1}\right| + c$ C) $\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x^2-1}{\sqrt{2x}}\right) + \frac{1}{\sqrt{2}} \log\left|\frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right| +$ d) $\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x^2-1}{\sqrt{2x}}\right) + \frac{1}{2\sqrt{2}} \log\left|\frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right| +$ $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx =$ 40. [2] a) $\frac{2}{\sqrt{\tan x}} + c$ b) $2\sqrt{\tan x} + c$ c) $2\sqrt{\sec x} + c$ d) $\frac{2}{\sqrt{\sec x}}$ The value of integral $\int \frac{1}{\left[(x-1)^3(x+2)^5\right]^{\frac{1}{4}}} dx$ is 41. [2] b) $\frac{4}{3}\left(\frac{x}{x}\right)$ a) $\frac{4}{3} \left(\frac{x+1}{x+2} \right)^{\frac{1}{4}} + c$ d) $\frac{4}{3}\left(\frac{x-1}{x-2}\right)$ C) $\frac{4}{3} \left(\frac{x+1}{x-2} \right)^{\frac{1}{4}} + c$ The area bounded by $y = 1 + \frac{8}{x^2}$, X-axis and the x ordinates x = 2, x = 4 is 42. [2] b) log 2 a) 2 d) 4 c) log 4 The curve passes through the point (3, 4). The normal to the curve at the point (x, y) passes through the point (3, 43. [2] 0). The equation of the curve is a) $x^2 - y^2 - 6x + 7 = 0$ b) $x^2 + y^2 - 6x + 7 = 0$ c) $x^2 + y^2 - 6x - 7 = 0$ d) $x^2 + y^2 + 6x - 7 = 0$ 44. Which of the following differential equations has the same order and degree? [2] a) $\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} + 8\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^6 + 5y = \mathrm{e}^x$ b) $\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3\right]^{\frac{2}{3}} = 4\frac{\mathrm{d}^3y}{\mathrm{d}x^3}$ c) $5\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)^4 + 8\left(1 + \frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 5y = x^8$ $\stackrel{\mathrm{d})}{=} y = x^2 rac{\mathrm{d}y}{\mathrm{d}x} + \sqrt{1 + \left(rac{\mathrm{d}y}{\mathrm{d}x}
ight)^2}$ The solution of the equation $\frac{dy}{dx}$ + 2y tan x = sin x satisfying y = 0 when x = $\frac{\pi}{3}$, is 45. [2] a) $y = 2\sin^2 x + \cos x - 2$ b) $v = 2\cos x - \sin^2 x - 1$ c) $v = 2\cos^2 x - \sin x + 2$ d) $y = 2\sin^2 x - \cos x - 2$ 46. A random variable X has the following probability distribution: [2]

	X	-2	-1	0	1	2	3	
	P(X)	0.1	K	0.2	2k	0.3	k	1
	Then the value of	k is			3	•	2	-
	a) 0.01			b) 0.1				
	c) 0.05			d) 0.3				
47.	A random variable X has the following probability distribution:					[2]		
	Σ	X	1	2		3	4	
	P(.	X)	$\frac{1}{7}$	$\frac{2}{7}$		$\frac{3}{7}$	$\frac{1}{7}$	
	Then, the varianc	e of this distribut	ion is	· ·	<u> </u>	·		-
	a) $\frac{40}{49}$ b) $\frac{49}{40}$							
	c) $\frac{29}{20}$			d) $\frac{20}{29}$	\bigcirc			
48.	The p.m.f. of a r.v. X is $P(x) = \begin{cases} \frac{1}{15}, & \text{for } x = 1, 2, \dots, 14, 15 \\ 0, & \text{otherwise.} \end{cases}$. Then, E(X) is equal to					[2]		
	a) 2 b) 4							
	c) 6			d) 8				
49.	A card is drawn at random 4 times, with replacement, from a pack of 52 playing cards. If getting a red card is					[2]		
	considered as success, then the mean and variance of the distribution are respectively							
	a) $\frac{3}{4}$, 1 b) 2, 1							
	c) 1, 2			d) 1, $\frac{3}{4}$	7			
50.	In eight throws of a die 1 or 3 is considered a success. Then the standard deviation of the success is				ess is	[2]		
	a) $\frac{2}{3}$			b) $\frac{4}{3}$				
	c) $\frac{8}{3}$		(d) $\frac{16}{9}$				
	(S	Z					