

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

b) 2(tan A - cot A)

d) 2 cot A

MATHEMATICS

MHT - CET - Mathematics

Time Allowed: 1 hour and 30 minutes

Maximum Marks: 100

[2]

- 1. $\tan A + \cot (180^\circ + A) + \cot (90^\circ + A) + \cot (360^\circ A) =$
 - a) 0
 - c) 2 tan A
- 2. The angle between the lines whose intercepts on the axes are (a, -b) and (b, -a) respectively, is [2]

a)
$$\tan^{-1} \frac{a^2 + b^2}{ab}$$

b) $\tan^{-1} \frac{b^2 - a^2}{ab}$
c) $\tan^{-1} \frac{b^2 - a^2}{2ab}$
d) $\tan^{-1} \frac{b^2 - a^2}{2}$

- A circle having centre at the origin passes through the three vertices of an equilateral triangle. The length of its [2] median being 9 units. Then the equation of that circle is
 - a) $x^{2} + y^{2} = 36$ c) $x^{2} + y^{2} = 18$ b) $x^{2} + y^{2} = 9$ d) $x^{2} + y^{2} = 81$
- 4. Let the tangents drawn from the origin to the circle, $x^2 + y^2 8x 4y + 16 = 0$ touch it at the points A and B. The [2] (AB)² is equal to
 - a) $\frac{32}{5}$
 - c) $\frac{56}{5}$
- 5. Given that $x \in [0, 1]$ and $y \in [0, 1]$. Let A be the event of (x, y) satisfying $y^2 \le x$ and B be the event of (x, y) [2] satisfying $x^2 \le y$. Then.
 - a) A, B are exhaustive b) $P(A \cap B) = \frac{1}{3}$
 - c) A, B are mutually exclusive d) A, B are independent

6. If the imaginary part of $\frac{2+i}{ai-1}$ is zero, where a is a real number, then the value of a is equal to [2] a) -2 b) 2 c) $-\frac{1}{2}$ d) $\frac{1}{2}$

7. ${}^{10}P_3 =$

a) 760	b) 560
c) 720	d) 680

8. How many 5 digit telephone numbers can be constructed using the digits 0 to 9, if each number starts with 67 [2] and no digit appears more than once?

<u>م</u> `	0 22E	L) 220
a	1) 222	0,000

CONTACT:8830597066 | 9130946703

[2]

	c) 337	d) 336	
9.	Consider the function $f(x) = \cos x^2$. Then		[2]
	a) f is not periodic π	b) f is of period $\sqrt{2\pi}$	
	c) f is not periodic	d) f is of period 2π	
10.	$\lim_{x \to 0} \frac{12^x - 3^x - 4^x + 1}{x \sin x}$ is equal to		[2]
	a) $\log \sqrt{3} \cdot \log 4$	b) log $\sqrt{3}$ ·log 2	
	c) log 2·log 3	d) log 4·log 3	
11.	If f(x) is continuous on [-4, 2], where f(x) = $\begin{cases} 6b - 3\\ 4x + 3 \end{cases}$	$egin{aligned} & ext{for} \ -4 \leq x < -2 \ ext{i}, & ext{for} \ -2 \leq x \leq 2 \end{aligned}$, then a + b =	[2]
	a) $\frac{1}{6}$	b) $-\frac{7}{6}$	
	c) $\frac{7}{6}$	d) $-\frac{1}{6}$	
12.	Negation of the proposition $(p \lor q) \land (\sim q \land r)$ is		[2]
	a) $(\sim \mathrm{p} \wedge \sim \mathrm{q}) ee (\mathrm{q} \lor \sim \mathrm{r})$	b) $(p \wedge q) \wedge (q \wedge \sim r)$	
	c) $(\sim \mathrm{p} ee \sim q) \wedge (\sim q \wedge r)$	d) $(\mathbf{p}\wedge\mathbf{q})artimes(\mathbf{q}artimes\mathbf{-r})$	
13.	If $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$, then $M_{21} =$		[2]
	a) 1	b) 3	
	c) 2	d) -1	
14.	If k is a scalar and I is a unit matrix of order 3, then a	dj (kI) =	[2]
	a) $k^2 I$	b) - _k 3 _I	
	c) $_{-k}2_{I}$	d) k^3I	
15.	$\cos\left(\sin^{-1}\frac{5}{12}\right) =$		[2]
	(13)	12	
	a) $\frac{1}{12}$	b) $\frac{12}{13}$	
16	$C) - \frac{1}{12}$	d) $-\frac{2}{13}$	[0]
10.	$\cos^{-}\frac{1}{5} + \tan^{-}\frac{1}{5} =$		[2]
	a) $\cot^{-1} \frac{27}{11}$	b) $\tan^{-1} \frac{27}{11}$	
	c) $\sin^{-1} \frac{11}{27}$	d) $\cos^{-1} \frac{11}{27}$	
17.	In \triangle ABC, 1 - tan $\frac{A}{2}$ tan $\frac{B}{2}$ =		[2]
	a) $\frac{2c}{a+b+c}$	b) $\frac{2}{a+b+c}$	
	C) $\frac{a}{a+b+c}$	d) $\frac{4a}{a+b+c}$	
18.	$2 \tan^{-1} \frac{1}{5} + \sec^{-1} \frac{5\sqrt{2}}{7} + 2 \tan^{-1} \frac{1}{8} =$		[2]
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{6}$	
	C) $\frac{\pi}{8}$	d) $\frac{\pi}{3}$	
19.	The value of $\lim_{x \to 0} \frac{1}{x} \left[\int\limits_{y}^{a} e^{\sin^2 t} dt - \int\limits_{x+y}^{a} e^{\sin^2 t} dt \right]$ is equation	jual to	[2]

	a) $-2 \sin y$	b) $e^{\sin^2 y}$	
	$a) e^{\cos^2 u}$	$\sin y$	
	c) e		[0]
20.	If $f(x)$ is defined on [-2, 2] by $f(x) = 4x^2 - 3x + 1$ and	$g(x) = \frac{f(-x) - f(x)}{x^2 + 3}$, then $\int_{-2}^{7} g(x) dx =$	[2]
	a) 0	b) 24	
	c) -48	d) 64	
21.	If $\int_{0}^{k} \frac{dx}{2+8x^2} = \frac{\pi}{16}$, then k =		[2]
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	
	c) $\frac{1}{8}$	d) 1	
22.	If $\int_{1}^{k} (2x - 3) dx = 12$, then k =		[2]
	a) -5	b) 5	
	c) 2	d) -2 and 5	
23.	The vectors $ec{a},ec{b}$ and $ec{c}$ are of the same length and tak	en pairwise, they form equal angles. If $ec{a}$ = $\hat{i}+\hat{j}$ and	[2]
	$ec{b}=\hat{j}+\hat{k}$, then the co-ordinates of $ec{c}$ are		
	a) (1, 0, 1)	b) (1, 2, 3)	
	c) (2, 1, 3)	d) (-1, 1, 2)	
24.	If $\vec{a} + \vec{b} + \vec{c} = \lambda \vec{d}$ and $\vec{b} + \vec{c} + \vec{d} = \mu \vec{a}$ and $\vec{a}, \vec{b}, \vec{c}$	are non-coplanar, then $ec{ extbf{a}}+ec{ extbf{b}}+ec{ extbf{c}}+ec{ extbf{d}}$ is equal to	[2]
	a) $\mu \vec{b}$	b) 0	
	c) $(\lambda + \mu)\vec{a}$	d) $\lambda \vec{a}$	
25.	If $ec{\mathbf{a}}, ec{\mathbf{b}}, ec{\mathbf{c}}$ are non-coplanar vectors and λ is a real num	hber then $ig[\lambda(ec{a}+ec{b})\lambda^2ec{b} \lambdaec{c}ig] = ig[ec{a}ec{b}+ec{c}ec{b}ig]$ for	[2]
	a) no value of λ	b) exactly one value of λ	
	c) exactly two values of λ	d) exactly three values of λ	
26.	If $ec{lpha}=2\hat{i}+3\hat{j}-\hat{k},$ $ec{eta}=-\hat{i}+2\hat{j}-4\hat{k}$ and $ec{\gamma}=\hat{i}$	$(ec{lpha}+ \hat{f j}+ \hat{f k}$, then $(ec{lpha} imesec{eta})\cdot(ec{lpha} imesec{\gamma})$ is equal to	[2]
	a) -74	b) 64	
	c) 60	d) 74	
27.	Equation of pair of straight lines drawn through (1, 1)) and perpendicular to the pair of lines $3x^2 - 7xy + 2y^2 = 0$	[2]
	is		
	a) $2(x - 1)^2 + 7(x - 1)(y - 1) - 3y^2 = 0$	b) $2(x-1)^2 + 7(x-1)(y-1) - 3(y-1)^2 = 0$	
	c) $2x^2 + 7xy - 11x + 6 = 0$	d) $2(x - 1)^2 + 7(x - 1)(y - 1) + 3(y - 1)^2 = 0$	

28. The equation of line is $\vec{r} = \vec{p} + t(\vec{q} - \vec{p})$, where $P(\vec{p}) \equiv (3, 4, 1)$ and $Q(\vec{q}) \equiv (5, 1, 6)$. The value of t for [2] which the line crosses XY-plane is

a)
$$t = \frac{1}{6}$$

b) $t = \frac{-1}{\sqrt{5}}$
c) $t = \frac{1}{4}$
d) $t = \frac{-1}{5}$

29. The point of intersection of the lines
$$\frac{x-3}{3} = \frac{y-7}{1} = \frac{x+3}{1}, \frac{x+3}{36} = \frac{y-3}{2} = \frac{x-4}{4}$$
 is [2]
a) $\left(21, \frac{5}{3}, \frac{9}{3}\right)$ (b) (2, 10, 4)
c) (5, 7, 2) (c) (3, 3, 6)
30. A factory owner wants to purchase 2 types of machines, A and B for his factory. The machine A requires an area
[2] of 1000 m² and 12 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 50 units, whereas the machine B requires
1200 m² area and 8 skilled men, and its daily output is 90 units. If an area of 7600 m² and 72 skilled men are
available to operate the machines. The linear constraints are
a) 1000x + 1200y ≤ 7600, 12x + By ≤ 72, x (b) 1000x + 1200y ≥ 7600, 12x + By ≥ 72, x (b) y ≥ 0 (b) (000x + 1200y ≥ 7600, 12x + By ≥ 72, x (b) y ≥ 0 (b) (000x + 100y) ≥ 7600, 12x + By ≥ 72, x (b) y ≥ 0 (b) (000x + 10) (1 + a)^{2} (1 + a)^

To find the value of $\int \frac{1+\log x}{x} dx$, the proper substitution is [2] 38. b) $\frac{1}{x} = t$ a) 1 + x = td) $\log x = t$ c) $1 + \log x = t$ [2] $\int x \cos^2 x \, dx =$ 39. a) $\frac{x^4}{4} + \frac{1}{4}x \sin 2x + \frac{1}{8}\cos 2x + c$ b) $\frac{x^4}{4} - \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + c$ c) $\frac{x^4}{4} - \frac{1}{4}x \sin 2x - \frac{1}{8}\cos 2x + c$ d) $\frac{x^4}{4} + \frac{1}{4}x \sin 2x - \frac{1}{8}\cos 2x + c$ 40. $\int \frac{x}{x^4-1} dx =$ [2] a) $\frac{1}{4} \log \left| \frac{x^2 + 1}{x^2 - 1} \right| + c$ b) $\frac{1}{2} \log \left| \frac{x^2 + 1}{x^2 - 1} \right| + c$ c) $\frac{1}{4} \log \left| \frac{x^2 - 1}{x^2 + 1} \right| + c$ d) $\frac{1}{2} \log \left| \frac{x^2 - 1}{x^2 + 1} \right| + c$ $\int \left(\frac{x+2}{x+4}\right)^2 e^x dx$ is equal to [2] 41. a) $e^x \left(\frac{x+2}{x+4}\right) + c$ b) e^{*x*} c) $\left(\frac{2xe^x}{x+4}\right) + c$ [2] Area enclosed between the curve $y^2(2a - x) = x^3$ and line x = 2a above X-axis is 42. a) $2\pi a^2$ b) $\frac{3\pi a^2}{2}$ d) $3\pi a^2$ c) πa^2 [2] $\left(1+\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{\frac{1}{2}}$ is Degree of the given differential equation (43. b) $\frac{1}{2}$ a) 2 d) 6 c) 3 The solution of the differential equation $\frac{dy}{dx} = \sin(x + y) \tan(x + y) - 1$ is [2] 44. a) $\csc (x + y) + \tan(x + y) = x + c$ b) x + cosec (x + y) = cc) $x + \sec(x + y) = c$ d) x + tan(x + y) = cIf a curve y = f(x) passes through the point (1, -1) and satisfies the differential equation, y(1 + xy) dx = x dy, 45. [2] then $f\left(-\frac{1}{2}\right)$ is equal to

a)
$$\frac{4}{5}$$
 b) $\frac{2}{5}$
c) $-\frac{2}{5}$ d) $-\frac{4}{5}$

46. Let X denote the number of fruits that are grown in a farm house in a particular day. The probability that X can [2] take the value of x has the following form, where k is some unknown constant.

$$P(X = x) = \begin{cases} k, & \text{if } x = 0\\ 2k, & \text{if } x = 1\\ 3k, & \text{if } x = 2\\ 0, & \text{otherwise} \end{cases}$$

Then the value of k is

a)
$$\frac{1}{2}$$

b) $\frac{1}{6}$
c) $\frac{1}{3}$
d) $\frac{1}{8}$

47. The p.m.f. of a random variable X is

[2]

X = x	1	2	3	4	5	
P(X = x)	$\frac{1}{20}$	$\frac{3}{20}$	a	b	$\frac{1}{20}$	
If $b = 2a$, then	If b = 2a, then					
a) $a = \frac{1}{3}, b = \frac{1}{2}$ b) $a = \frac{1}{4}, b = \frac{1}{2}$						
c) $a = \frac{1}{2}$, $b = \frac{1}{3}$ d) $a = \frac{1}{2}$, $b = \frac{1}{4}$						
Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time [2]				[2]		
when the professor ends the lecture. Suppose X has p.d.f. $f(x) = \begin{cases} kx^2, & 0 \le x \le 2\\ 0; & \text{otherwise} \end{cases}$. Then, the probability that						
lecture ends within 1 minute of the bell ringing is						
a) $\frac{1}{2}$	b)	$\frac{1}{4}$				
c) $\frac{1}{8}$	d)	$\frac{1}{16}$				

The probability that an event A occurs in a single trial of an experiment is 0.3. Six independent trials of the 49. [2] experiment are performed. What is the variance of probability distribution of occurrence of event A?

d) $\frac{1}{16}$

b) 1.26

a) 12.6

48.

- d) 1.8 c) 0.18
- In a trial the probability of success is twice the probability of failure. In six trials the probability of at least four 50. [2] successes will be
 - a) $\frac{400}{729}$ b) $\frac{500}{729}$ c) $\frac{496}{729}$ $\frac{600}{729}$ d)