

SATISH SCIENCE ACADEMY

**DHANORI PUNE-411015** 

## MATHEMATICS

## **MHT - CET - Mathematics**

## Time Allowed: 1 hour and 30 minutes Maximum Marks: 100 1. If $\sin A + \cos A = 1$ , then $\sin 2A$ is equal to [2] b) $\frac{1}{2}$ a) 2 c) 1 d) 0 2. The straight lines x + 2y - 9 = 0, 3x + 5y - 5 = 0 and ax + by - 1 = 0 are concurrent, if the straight line 35x - 22y[2] + 1 = 0 passes through the point a) (a, -b) c) (a, b) [2] 3. Radius of the parametric equation represented by x = 2aa) 2a c) 3a d) a The equation of the circle passing through the point (1, 0) and (0, 1) and having the smallest radius is 4. [2] b) $x^2 + y^2 + x + y - 2 = 0$ a) $x^2 + y^2 - 2x - 2y + 1 = 0$ c) $x^2 + y^2 - x - y = 0$ d) $x^2 + y^2 + 2x + 2y - 7 = 0$ 5. Two events A and B have probabilities 0.25 and 0.5 respectively. The probabilities that A and B occur [2] simultaneously is 0.15. Then the probability that A or B occurs is a) 0.72 b) 0.61 c) 0.7 d) 0.6 For all complex numbers $z_1$ , $z_2$ satisfying $|z_1| = 12$ and $|z_2 - 3 - 4i| = 5$ , the minimum value of $|z_1 - z_2|$ is [2] 6. a) 7 b) 2 c) 0 d) 17 7. A person has 15 friends of whom 10 are relatives. In how many ways can he invite 12 guests such that 8 of them [2] are relative? a) 250 b) 175 c) 150 d) 225 8. How many numbers can be formed from the digits 1, 2, 3, 4 when the repetition is not allowed [2] a) 4<sub>P4</sub> b) 4<sub>P3</sub> c) ${}^{4}P_{1} + {}^{4}P_{2} + {}^{4}P_{3} + {}^{4}P_{4}$ d) ${}^{4}P_{1} + {}^{4}P_{2} + {}^{4}P_{3}$

1/6

| 9.  | Let $f : R \to R$ be defined by $f(x) = x^4$ , then                                                       |                                                                                           | [2] |
|-----|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|
|     | a) f is one-one but not onto                                                                              | b) f is one-one and onto                                                                  |     |
|     | c) f is neither one-one nor onto                                                                          | d) f may be one-one and onto                                                              |     |
| 10. | $\lim_{x\to 1} \frac{x^{100}-1}{x^{50}-1} =$                                                              |                                                                                           | [2] |
|     | a) -1                                                                                                     | b) 1                                                                                      |     |
|     | c) -2                                                                                                     | d) 2                                                                                      |     |
| 11. | If $f(x) = \sin x - \cos x$ , $x \neq 0$ , is continuous at $x = 0$ , then $f(0)$ is equal to             |                                                                                           |     |
|     | a) -1                                                                                                     | b) 1                                                                                      |     |
|     | c) -2                                                                                                     | d) 2                                                                                      |     |
| 12. | Which of the following is a tautology?                                                                    |                                                                                           | [2] |
|     | a) $\mathrm{p}  ightarrow (\mathrm{p} \wedge \mathrm{q})$                                                 | b) $(\mathbf{p}\wedge\mathbf{q})\leftrightarrow\sim\mathbf{q}$                            |     |
|     | c) $\mathbf{q} \wedge (\mathbf{p}  ightarrow \mathbf{q})$                                                 | d) $\sim (\mathbf{p}  ightarrow \mathbf{q})  ightarrow \mathbf{p} \wedge \sim \mathbf{q}$ |     |
| 13. | The matrix $\begin{bmatrix} \lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ is invertible, if |                                                                                           | [2] |
|     | a) $\lambda  eq$ -18                                                                                      | b) $\lambda \neq$ -15                                                                     |     |
|     | c) $\lambda \neq -16$                                                                                     | d) $\lambda \neq -17$                                                                     |     |
| 14. | If $A^{-1} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ , then adj $A =$       |                                                                                           | [2] |
|     | a) I                                                                                                      | b) 2A-1                                                                                   |     |
|     | c) <sub>A</sub> -1                                                                                        | d) A                                                                                      |     |
| 15. | The range of $\tan^{-1} x$ is                                                                             | <u>ک</u>                                                                                  | [2] |
|     | a) $(\pi, \frac{\pi}{2})$                                                                                 | b) (0, <i>π</i> )                                                                         |     |
|     | c) (-π, π)                                                                                                | d) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$                                            |     |
| 16. | If $\sqrt{2} \sec \theta + \tan \theta = 1$ , then the general value of $\theta$ is                       | 5                                                                                         | [2] |
|     | a) $2n\pi - \frac{\pi}{4}$                                                                                | b) $2n\pi + \frac{\pi}{4}$                                                                |     |
|     | c) $2n\pi \pm \frac{\pi}{4}$                                                                              | d) $n\pi + \frac{3\pi}{4}$                                                                |     |
| 17. | The perimeter of a $\triangle ABC$ is 6 times the arithmetic n                                            | nean of the sines of its angles. If the side a is 1, then the                             | [2] |
|     | angle A is                                                                                                |                                                                                           |     |
|     | a) $\frac{\pi}{2}$                                                                                        | b) $\frac{\pi}{3}$                                                                        |     |
|     | C) $\frac{\pi}{6}$                                                                                        | d) π                                                                                      |     |
| 18. | Total number of solutions of $\sin^4 x + \cos^4 x = \sin x c$                                             | os x in [0, $2\pi$ ] is equal to                                                          | [2] |
|     | a) 8                                                                                                      | b) 6                                                                                      |     |
|     | c) 4                                                                                                      | d) 2                                                                                      |     |
|     |                                                                                                           |                                                                                           | [2] |

2/6

|     | π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                     |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 19. | $\int_{0} \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x}  \mathrm{dx} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                     |     |
|     | a) $\frac{\pi^2}{2ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) $\frac{\pi^2}{ab}$                                                                                                                                               |     |
|     | C) $\frac{\pi}{ab}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) $\frac{\pi}{2ab}$                                                                                                                                                |     |
| 20. | The value of $\int\limits_{0}^{2\pi}\cos^{99}x$ dx is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     | [2] |
|     | a) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) 99                                                                                                                                                               |     |
|     | c) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d) 0                                                                                                                                                                |     |
| 21. | Let $I_1 = \int_{a}^{\pi-a} x f(\sin x) dx$ , $I_2 = \int_{a}^{\pi-a} f(\sin x) dx$ , then $f(\sin x) dx$ | $I_2$ is equal to                                                                                                                                                   | [2] |
|     | a) $\pi I_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b) $\frac{2}{\pi}I_1$                                                                                                                                               |     |
|     | c) 2I <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) $\frac{\pi}{2}I_1$                                                                                                                                               |     |
| 22. | $\int\limits_0^\pi \frac{dx}{1{-}2a\cos x{+}a^2} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     | [2] |
|     | a) $\pi(1 - a^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) $\frac{\pi}{2(1-a^2)}$                                                                                                                                           |     |
|     | c) $2\pi(1 - a^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) $\frac{\pi}{1-a^2}$                                                                                                                                              |     |
| 23. | If three points A, B and C have co-ordinates (1, x, 3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3, 4, 7) and (y, -2, -5) respectively. They are collinear,                                                                                                         | [2] |
|     | then x,y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     |     |
|     | a) 2, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) 2, -3                                                                                                                                                            |     |
|     | c) -2, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) -2, -3                                                                                                                                                           |     |
| 24. | The number of distinct real values of $\lambda$ , for which the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$ , $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{\mathrm{i}} + \hat{\mathrm{j}} - \lambda^2 \hat{\mathrm{k}}$ | [2] |
|     | are coplanar, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |     |
|     | a) Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) Three                                                                                                                                                            |     |
|     | c) One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) Two                                                                                                                                                              |     |
| 25. | If $\vec{a}$ , $\vec{b}$ and $\vec{c}$ be three non-zero vectors, no two of white $\vec{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ich are collinear. If the vector $\vec{a} + 2\vec{b}$ is collinear with $\vec{c}$                                                                                   | [2] |
|     | and $b + 3c$ is collinear with $a$ , then ( $\lambda$ being some no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on-zero scalar) $a + 2b + 6c$ is equal to                                                                                                                           |     |
|     | a) $\lambda b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b) $\lambda \vec{c}$                                                                                                                                                |     |
|     | c) $\lambda \vec{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d) 0                                                                                                                                                                |     |
| 26. | Line with direction ratios 1, 1, 1 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     | [2] |
|     | a) parallel to X-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b) parallel to Y-axis                                                                                                                                               |     |
|     | c) equally inclined to axes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d) parallel to Z-axis                                                                                                                                               |     |
| 27. | If the angle $\theta$ is acute, then the acute angle between x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $e^{2}(\cos\theta - \sin\theta) + 2xy\cos\theta + y^{2}(\cos\theta + \sin\theta) = 0$ is                                                                            | [2] |
|     | a) $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b) $\frac{\theta}{3}$                                                                                                                                               |     |
|     | c) 2 <i>θ</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d) $\frac{\theta}{2}$                                                                                                                                               |     |
| 28. | Equations of a line and a plane are respectively $\frac{x+3}{2}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $=\frac{y-4}{3}=\frac{z+5}{1}$ and 2x - 3y + 5z = 1. Then                                                                                                           | [2] |
|     | a) line is parallel to the plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) line is equal to the plane                                                                                                                                       |     |

c) line is perpendicular to the plane

d) line lies in the plane

29. A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the co-[2] ordinate axes. The line meets the plane 2x + y + z = 9 at the point Q, then l(PQ) =

a) 
$$\sqrt{2}$$
 b) 1

d)  $\sqrt{3}$ c) 2

30. The objective function z = 6x + 2y is subject to  $5x + 9y \le 90$ ,  $x + y \ge 4$ ,  $y \le 8$ ,  $x, y \ge 0$ . The minimum value [2] of z occurs at

c) (18, 0) d) (4, 0)

31. Let  $f(x) = \tan^{-1}x$ . Then f'(x) + f''(x) is equal to 0, when x is equal to

- a) 1 b) 0
- c) -i d) i If  $y = {f(x)}^{\phi(x)}$ , then  $\frac{dy}{dx}$  is 32. [2] a)  $\frac{\phi}{f} \left( \frac{df}{dx} \right) + \frac{d\phi}{dx} \log f$ b)  $e^{\phi \log f} \left\{ \phi \frac{f}{d} \right\}$ c)  $e^{\phi \log f} \left\{ \phi \frac{f}{c} + \phi' \log f \right\}$

33. If 
$$y = \left(1 + \frac{1}{x}\right) \left(1 + \frac{2}{x}\right) \left(1 + \frac{3}{x}\right) \dots \left(1 + \frac{n}{x}\right)$$
 and  $x \neq 0$ , then  $\frac{dy}{dx}$  at  $x = -1$  is  
a) n!  
b)  $(n - 1)!$ 

C) 
$$(-1)^{n} (n - 1)!$$
  
34. If x = sin t and y = sin<sup>3</sup> t, then  $\frac{d^{2}y}{dx^{2}}$  at  $t = \frac{\pi}{2}$  is [2]

b) 6

d) 8

a) 2

 $\int e^x \tan^2(e^x) dx =$ 

36.

38.

35. Maximum area of a rectangle whose perimeter is given as 24 metres is equal to

b) 49 m<sup>2</sup> a) 36 m<sup>2</sup> c)  $64 \text{ m}^2$ d) 81 m<sup>2</sup>

[2]

[2]

[2]

- The function  $f(x) = \frac{x}{1+|x|}$  is a) strictly decreasing b) neither increasing nor decreasing d) not differentiable at x = 0c) strictly increasing The normal to the curve,  $x^2 + 2xy - 3y^2 = 0$  at (1, 1) [2] 37. a) does not meet the curve again b) meets the curve again in the fourth quadrant c) meets the curve again in the third quadrant
  - d) meets the curve again in the second quadrant

[2]

a) 
$$\tan(e^x) - e^x + c$$
  
b)  $e^x [\tan(e^x) - 1] + c$ 

L

the standard deviation ( $\sigma$ ) is

a) 
$$\sqrt{\frac{1}{4}}$$
  
b)  $\sqrt{\frac{5}{36}}$   
c)  $\sqrt{\frac{1}{3}}$   
d)  $\frac{1}{3}\sqrt{\frac{5}{2}}$ 

49. If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a [2] value greater than or equal to 1 is

a) 
$$\frac{2}{3}$$
 b)  $\frac{7}{8}$   
c)  $\frac{4}{5}$  d)  $\frac{15}{16}$ 

50. If getting a head on a coin when it is tossed is considered as success, then the probability of having more number [2] of failures when ten fair coins are tossed simultaneously, is

