Solution

GEOMERTY

Class 10 - Mathematics - II

1. (i) Four alternative answers for each of the following sub-questions are given. Choose the correct alternative and write its alphabet:

i. (c) (3, 4, 5)**Explanation:** $5^2 = 25$ $3^2 + 4^2 = 9 + 16 = 25$ $\therefore 5^2 = 3^2 + 4^2$ ii. (c) 1 **Explanation:** $2 an 45^\circ - 2 \sin 30^\circ$ $= 2(1) - 2\left(\frac{1}{2}\right)$ = 2 - 1 = 1(d) $\sqrt{3}$ iii. **Explanation:** Angle made with the positive direction of X-axis (θ) = 60 Slope of the line $(m) = \tan \theta$ $\therefore m = \tan 60^\circ = \sqrt{3}$ \therefore The slope of the line is $\sqrt{3}$. (d) 8.8 cm iv. **Explanation:** Distance between centres = 5.5 + 3.3= 8.8 (ii) Solve the following sub-questions : i. $\frac{A(\triangle ABC)}{A(\triangle PQR)}$ $\frac{2}{3}$ [Theorem of areas of similar triangles] PQ^2 В ii. • 0 C D In a circle with centre *O*, chord $AB \cong$ chord CD $\therefore m(\operatorname{arc} AB) \cong m(\operatorname{arc} CD)$...[Corresponding arcs of congruent chords of a circle are congruent] $\therefore m(\text{arcCD}) = 120^{\circ}$ iii. Diagonal of a square $=\sqrt{2} imes$ side $=\sqrt{2} imes 10$ $=10\sqrt{2}\ cm$ iv. Let $A(x_1, y_1) = A(4, -3)$ $B(x_2, y_2) = B(7, 5)$ $C(x_3, y_3) = C(-2, 1)$... By centroid formula, $y = \frac{y_1 + y_2 + y_3}{3} = \frac{-3 + 5 + 1}{3} = \frac{3}{3} = 1$... The Y-co-ordinate of the centroid of the given triangle is 1.

2. (i) Complete any two activities and rewrite it :

i. $m(\operatorname{arc} PQR) = 180^{\circ} \dots$ [measure of semicircle] $\therefore m(\operatorname{arc} PXR) = \boxed{180^{\circ}}$

 $\therefore \angle PQR = \frac{1}{2} m(\text{arc} | \text{PXR} |)$... Inscribed angle theorem $=\frac{1}{2} imes 180^{\circ}$ $\therefore \angle PQR = 90^{\circ}$ ii. $\cos\theta = \frac{5}{13}$...[Given] We know that, $\sin^2 heta + \cos^2 heta = 1$ $\sin \theta + \cos \theta = 1$ $\therefore \sin^2 \theta + \left(\frac{5}{13}\right)^2 = 1$ $\therefore \sin^2 \theta + \frac{25}{169} = 1$ $\therefore \sin^2 \theta = 1 - \frac{25}{169}$ $\therefore \sin^2 \theta = \frac{169 - 25}{169}$ $\therefore \sin^2 \theta = \frac{144}{169}$ $\therefore \sin \theta = \frac{12}{13} \dots \text{[Taking square root on both sides]}$ iii. Given: Radius (r) = 7cm, Length of arc (l) = 20 cm To find: Area of the sector Area of sector $=\frac{l \times r}{2}$ $=rac{20 imes7}{2}$ $=10 imes7=70~cm^2$ \therefore The area of the sector is 70 cm^2 . (ii) Solve any four of the following sub-questions : i. Chord AB and chord CD intersect each other at point E ... (given) $\therefore CE \times ED = AE \times EB$... Theorem of internal division of chords $\therefore 12 \times ED = 15 \times 6$ $\therefore ED = \frac{90}{12}$ $\therefore ED = 7.5$ ii. $\triangle ABC$ is *right angled* triangle. : By Pythagoras theorem, $AB^2 + BC^2 = AC^2$ $\therefore 5^2 + BC^2 = 13^2$ $\therefore 25 + BC^2 = 169$ $\therefore BC^2 = 169 - 25 = 144$ $\therefore BC = 12$ units iii. i. $\angle L = \frac{1}{2} m(\operatorname{arc} MN)$...[By inscribed angle theorem] \therefore 35 = $\frac{1}{2}$ m(arc MN) $\therefore 2 imes 35 = m(\operatorname{arc} MN)$ $\therefore m(\operatorname{arc} MN) = \overline{70^{\circ}}$ ii. $m(\operatorname{arc} MLN) = \overline{360^{\circ}} - m(\operatorname{arc} MN)$...[Definition of measure of arc] $= 360^{\circ} - 70^{\circ}$ $\therefore m(\operatorname{arc} MLN) = 290^{\circ}$ iv. Let $A(x_1, y_1) = A(2, 5)$ and $B(x_2, y_2) = B(4, -1)$ Here, $x_1=2, x_2=4, y_1=5, y_2=-1$ Slope of line $AB=rac{y_2-y_1}{x_2-x_1}$ $=rac{-1-5}{4-2}=rac{-6}{2}=-3$ \therefore The slope of line *AB* is -3. v. Area of sector $=\frac{l \times r}{2}$ Here, $l = 2.2 \ cm$ and $r = 3.5 \ cm$ \therefore Area of sector $=\frac{2.2 \times 3.5}{2}$ = 1.1 imes 3.5

 $= 3.85\ cm^2$

 \therefore The area of the sector is 3.85 cm^2 .

3. (i) Complete any one activity of the following and rewrite it :

i.
$$2AX = 3BX$$
 ...[Given]
 $\therefore \frac{AX}{BX} = \frac{3}{2}$
 $\therefore \frac{AX+BX}{BX} = \frac{3+2}{2}$...[By componendo]
 $\therefore \frac{BA}{BX} = \frac{5}{2} \dots$ (i) $[A - X - B]$
In $\triangle BCA$ and $\triangle BYX$,
 $\angle BCA \cong \angle BYY$
 $\angle BAC \cong \angle BXY$
 $\therefore \triangle BCA \sim \triangle BYX \dots$ [Corresponding angles]
 $\therefore \triangle BCA \sim \triangle BYX \dots$ [By AA test of similarity]
 $\therefore \frac{BA}{BX} = \frac{AC}{XY}$...[corresponding sides of similar triangles]
 $\therefore \frac{5}{2} = \frac{AC}{9}$...[From (i)]
 $\therefore AC = \frac{9 \times 5}{2}$
 $\therefore AC = 22.5$ units
ii. In $\triangle CAE$ and $\triangle BDE$.
 $\angle AEC \cong \angle DEB \dots$ [Vertically opposite angles]
 $\angle CAE \cong \angle BDE$...[angles inscribed in the same arc]
 $\therefore \triangle CAE \sim \triangle BDE \dots$ [AA test of similarity]

 $\therefore \frac{|AE|}{DE} = \frac{CE}{|BE|} \quad [\text{corresponding sides of similar triangles}]$

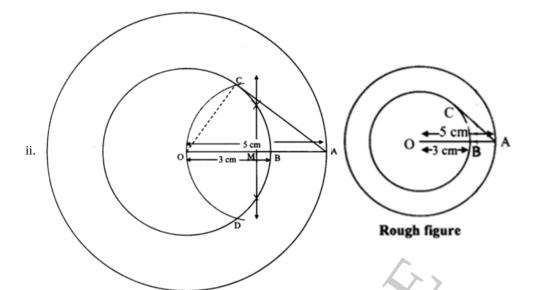
$$\therefore AE \times EB = CE \times ED.$$

(ii) Solve any two of the following sub-questions :

i. Distance between two points

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

By distance formula,
$$AB = \sqrt{[2 - (-2)]^2 + (2 - 2)^2}$$
$$= \sqrt{(2 + 2)^2 + (0)^2}$$
$$= \sqrt{(4)^2 = 4}$$
$$BC = \sqrt{(2 - 2)^2 + (7 - 2)^2}$$
$$= \sqrt{(0)^2 + (5)^2}$$
$$= \sqrt{(5)^2 = 5}$$
$$AC = \sqrt{[2 - (-2)]^2 + (7 - 2)^2}$$
$$= \sqrt{(2 + 2)^2 + (5)^2} = \sqrt{(4)^2 + (5)^2}$$
$$= \sqrt{16 + 25} = \sqrt{41}$$
Now, $AC^2 = (\sqrt{41})^2 = 41$
Consider, $AB^2 + BC^2 = 4^2 + 5^2$
$$= 16 + 25 = 41$$
$$\therefore AC^2 = AB^2 + BC^2$$
$$\therefore \triangle ABC$$
 is a right angled triangle. ...[Converse of Pythagoras theorem]
$$\therefore$$
 Points A, B and C are the vertices of a right angled triangle.



Steps of construction:

- i. With centre *O*, draw concentric circles with radii 3 cm and 5 cm.
- ii. Take point A such that $OA = 5 \ cm$.
- iii. Draw the perpendicular bisector of seg OA. It intersects OA in point M.
- iv. With M as centre and radius equal to AM, draw an arc intersecting the circle in points C and D.
- v. Draw ray AC. Ray AC is the required tangent.

Length of the tangent segment is 4 *cm*.

By Pythagoras theorem:

Tangent $CA \perp$ radius OC ...[Tangent theorem]

 \therefore In $riangle AOC, riangle C = 90^{\circ}$

 $OA = 5 \ cm$...[Radius of the bigger circle]

- $OC = 3 \ cm$...[Radius of the smaller circle]
- ∴ By Pythagoras Theorem, we get

$$OA^2 = OC^2 + AC^2$$

$$\therefore (5)^2 = (3)^2 + AC^2$$

$$\therefore 25 = 9 + AC^2$$

$$\therefore AC = 25$$

$$\therefore AC = 16$$

$$\therefore AC = 4 cm$$

 \therefore Length of the tangent segment is 4 *cm*.

iii. In riangle PSQ, $riangle PSQ = 90^{\circ}$

∴ $PS^2 + QS^2 = PQ^2$. . . [Pythagoras theorem] ∴ $PS^2 = PQ^2 - \boxed{QS^2}$...(i)

Similarly,

In
$$riangle PSR$$
, $riangle PSR$ = 90°

$$\therefore PS^{2} + \boxed{RS^{2}} = PR^{2} \quad ...[Pythagoras theorem]$$

$$\therefore PS^{2} = PR^{2} - \boxed{RS^{2}} \quad ...(ii)$$

$$\therefore PQ^{2} - \boxed{QS^{2}} = \boxed{PR^{2}} - RS^{2} \dots [From (i) and (ii)]$$

$$\therefore PO^2 + RS^2 = PR^2 + OS^2$$

- 4. Solve any two of the following sub-questions :
 - (i) Let AB be the tower of height 48 m.

Let *C* and *D* be the position of two cars at angles of depression 60° and 30° respectively.

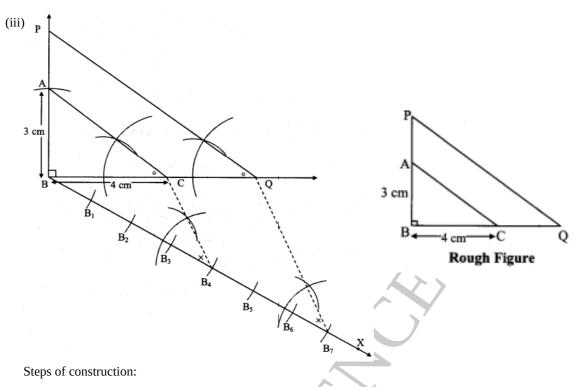
AM is the horizontal line and $\angle MAD$ and $\angle MAC$ are angles of depression of measures 30° and 60° respectively. $\angle MAD$ and $\angle ADB$, $\angle MAC$ and $\angle ACB$ are pairs of alternate angles.

 $\therefore m \angle ADB = 30^{\circ}$ and $m \angle ACB = 60^{\circ}$

To find: Distance between C and D.

i.e., l(seg CD)M Α 60 30° 48 m . 60° 30° D R С In $\triangle ADB, \angle B = 90^{\circ}$ $\therefore \tan 30^\circ = \frac{AB}{DB}$ $\therefore \frac{1}{\sqrt{3}} = \frac{48}{DB}$ $\therefore DB = 48\sqrt{3} \ cm$ In $\triangle ACB, \angle B = 90^{\circ}$ $\therefore \tan 60^\circ = \frac{AB}{CB}$ $\therefore \sqrt{3} = \frac{48}{CB}$ $\therefore CB = \frac{48}{\sqrt{3}}$ $\therefore CB = \frac{\frac{\sqrt{3}}{48}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \dots [Multiply numerator and denominator by \sqrt{3}]$ $\therefore CB = \frac{\frac{48\sqrt{3}}{3}}{3}$ $\therefore CB = 16\sqrt{3} cm$ $\therefore DC = DB - CB$ $=48\sqrt{3}-16\sqrt{3}$ $=32\sqrt{3}$ $= 32 imes 1.73 \dots [\sqrt{3} = 1.73]$ $= 55.36\ cm$ \therefore The distance between the two cars is 55. 36 cm. (ii) Area of square $ABCD = (side)^2$ $=(50)^2$ $=2500\ m^2$ Radius of sector $A-SP=rac{1}{2} imes 50=25~m$ $heta = 90^\circ\,$...[Angle of a square] Area of sector $A-SP=rac{ heta}{360} imes\pi r^2$ $=rac{90}{360} imesrac{22}{7} imes(25)^2 \ = \left(rac{1}{4} imesrac{13750}{7}
ight)m^2$ A(shaded region) = Area of square ABCD - 4 (Area of sector A - SP) $= 2500 - 4 \left(\frac{1}{4} \right)$ $=2500-\frac{13750}{1}$ $=\frac{17500-13750}{1}$ $=\frac{3750}{1}$ 7 $pprox 535.71~m^2$

Area of the shaded region is $535.71 m^2$.



- i. Draw segment *BC* of length 4 cm.
- ii. Take $\angle B$ as 90° and draw an arc of 3 cm on it. Name the point as A.
- iii. Join segment *AC* to obtain $\triangle ABC$.
- iv. Draw ray *BX* such that $\angle CBX$ is an acute angle.

v. Locate points
$$B_1, B_2, B_3, B_4, B_5, B_6, B_7$$
 on ray BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.

- vi. Join point C and B_4 .
- vii. Through point B_7 draw a line parallel to segment CB_4 which intersects segment BC at point Q.

viii. Draw a line parallel to AC through Q to intersect line AB at point P.

 $\triangle PBQ$ is the required triangle similar to $\triangle ABC$.

5. Solve any one of the following sub-questions : (i) In $\triangle XDE$, $PQ \parallel DE$...[Given]

$$\therefore \frac{XP}{|PD|} = \frac{\overline{XQ}}{QE} \dots (i) [Basic proportionality theorem]$$

In
$$\triangle XEF, QR \parallel EF$$
 ...[Given]

$$\therefore \frac{XQ}{QE} = \frac{|\underline{XR}|}{RF} \dots \text{ (ii) Basic proportionality theorem}$$
$$\therefore \frac{XP}{PD} = \frac{|\underline{XR}|}{|\underline{PE}|} \text{ From (i) and (ii)]}$$

: seg PR || seg DF ...[Converse of basic proportionality theorem]

(ii)

RF

ii. AOC is a diameter of the circle with centre O[Given]

 \therefore seg OA is a radius.

 \therefore seg OA \perp line TA ...[Tangent theorem]

 $\therefore \angle OAT = 90^{\circ}$...(i) [A-O-C]

As AC is a diameter, we get

 $\therefore \angle ABC = 90^{\circ}$... (ii)[Angle inscribed in a semicircle]

iii. From equations (i) and (ii), we get

$$\angle CAT \cong \angle ABC$$