

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

GEOMERTY

Class 10 - Mathematics - II

Time Allowed: 2 hours

General Instructions:

Maximum Marks: 40

1. All questions are compulsory.

2. Use of a calculator is not allowed.

- 3. The numbers to the right of the questions indicate full marks.
- 4. In case of MCQs Q. No. 1(A) only the first attempt will be evaluated and will be given credit.
- 5. Draw proper figures wherever necessary.
- 6. The marks of construction should be clear. Do not erase them.
- 7. Diagram is essential for writing the proof of the theorem.

a) Obtuse angled triangle

c) Right angled triangle

 $1 + \tan^2 \theta = ?$

a) $\cot^2 \theta$

c) $\csc^2 \theta$

ii.

1.

(a)	Four alternative answers for each of the following sub-questions are given. Choose the correct		
	alternative and write its alphabet:		
	i.	If a,b,c are sides of a triangle and $a^2+b^2=c^2$, name the type of triangle:	[1]

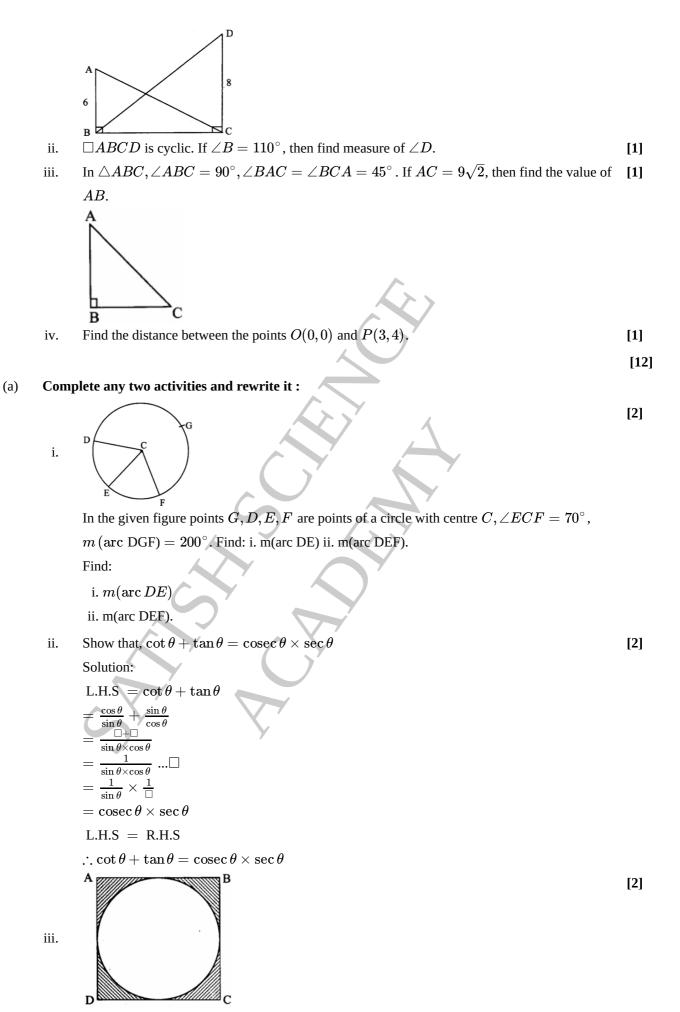
- If a, b, c are sides of a triangle and $a^{-} + b^{-} = c^{-}$, name the type of triangle.
 - b) Equilateral triangle
 - d) Acute angled triangle

[1]

[8]

b) $\sec^2 heta$ d) $\sin^2 heta$

iii. A line makes an angle of 60° with the positive direction of X -axis, so the slope of a line is [1]


a)
$$\frac{1}{2}$$

b) $\frac{\sqrt{3}}{2}$
c) $\frac{1}{\sqrt{3}}$
d) $\sqrt{3}$

iv. $\angle PRQ$ is inscribed in the arc PRQ of a circle with centre O. If $\angle PRQ = 75^{\circ}$, then [1] $m(\operatorname{arc} PRQ) =$ _____.

a) 285°	b) 150°
c) 75°	d) 210°

(b) Solve the following sub-questions :

i. In the following figure, $\angle ABC = \angle DCB = 90^\circ$, AB = 6, DC = 8, then $\frac{A(\triangle ABC)}{A(\triangle DCB)} =$? [1]

2.

In the figure given above, $\Box ABCD$ is a square and a circle in inscribed in it. All sides of a square touch the circle.

2/5

If $AB = 14 \ cm$, find the area of shaded region. Area of square $= (\Box)^2$...[Formula] $= 14^{2}$ $= \Box cm^2$ Area of circle = \Box ...[Formula] $=\frac{22}{7} \times 7 \times 7$ $=154\,cm^2$ Area of shaded portion = Area of square - Area of circle = 196 - 154 $= \Box cm^2$ Solve any four of the following sub-questions : [2] i. Ν In the above figure, $\angle L = 35^{\circ}$, find: i. m(arc MN) ii. m(arc MLN) Activity: i. $\angle L = \frac{1}{2} m(\text{arc MN}) \dots [\text{ By inscribed angle theorem }]$ $\therefore \Box = \frac{1}{2} m(\text{arc MN})$ $\therefore 2 imes 35 = m(rc MN)$ \therefore (arc MN) = \Box ii. $m(\operatorname{arc} MLN) = \Box - m(\operatorname{arc} MN) \dots [Definition of measure of arc]$ $= 360^\circ - 70^\circ$ $\therefore m(\operatorname{arc} MLN) = \Box$ Find the length of diagonal of rectangle having sides 11 cm and 60 cm. [2] ii. [2] iii. In the above figure, ray PQ touches the circle at point Q. If PQ = 12, PR = 8, find the length of seg PS. Find the slope of the line passing through the points A(4,7) and B(2,3). iv. [2] A circle is inscribed in square *ABCD* of side 14 cm. Complete the following activity to find [2] v.

(b)

the area of shaded portion.

A A B B B B B B B C C Activity: Area of square $ABCD = \Box$ $= 14^2$ $= 196 \ cm^2$ Area of circle $= \pi r^2$ $= \frac{22}{7} \times 7^2$ $= \Box \ cm^2$ Area of shaded portion = Area of square ABCD - Area of circle

- $= 196 \Box$
- $=\Box cm^{2}$

(a) Complete any one activity of the following and rewrite it :

- Prove that: The ratio of the intercepts made on a transversal by three parallel lines is equal to the ratio of the corresponding intercepts made on any other transversal by the same parallel lines.
- ii. AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A. Write [3] answers of the following questions:
 - i. Draw the figure using given information.
 - ii. Find the measures of $\angle CAT$ and $\angle ABC$ with reasons.
 - iii. Whether $\angle CAT$ and $\angle ABC$ are congruent? Justify your answer.

(b) Solve any two of the following sub-questions :

i. Find the co-ordinates of point *P* where *P* is the midpoint of a line segment *AB* with [3] A(-4, 2) and B(6, 2).

$$\begin{array}{c|c} A & P(x, y) \\ \hline (-4, 2) & (6, 2) \end{array}$$

Suppose,
$$(-4,2) = (x_1,y_1)$$
 and $(6,2) = (x_2,y_2)$ and co-ordinates of P are (x,y_2)

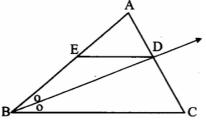
. According to midpoint theorem,

$$x = rac{x_1 + x_2}{2} = rac{\Box + 6}{2} = rac{\Box}{2} = \Box$$

 $y = rac{y_1 + y_2}{2} = rac{2 + \Box}{2} = rac{4}{2} = \Box$

 \therefore Co-ordinates of midpoint P are \Box

- ii. Draw a circle of radius 3.3 cm. Draw a chord PQ of length 6.6 cm. Draw tangents to the [3] circle at points P and Q.
- iii. If *a* and *b* are natural numbers and a > b. If $(a^2 + b^2)$, $(a^2 b^2)$ and 2ab are the sides of **[3]** the triangle, then prove that the triangle is right angled. Find out two Pythagorean triplets by taking suitable values of *a* and *b*.


[9]

4. Solve any two of the following sub-questions :

- (a) A straight road leads to the foot of the tower of height 48 m. From the top of the tower the angles of [4] depression of two cars standing on the road are 30° and 60° respectively. Find the distance between the two cars. ($\sqrt{3} = 1.73$)
- (b) A bucket is in the form of a frustum of a cone. It holds 28.490 litres of water. The radii of the top and [4] the bottom are 28 cm and 21 cm respectively. Find the height of the bucket. $\left(\pi = \frac{22}{7}\right)$
- (c) Draw a circle of radius 2.7 cm and draw a chord PQ of length 4.5 cm. Draw tangents at points P and [4] Q without using the centre.

5. Solve any one of the following sub-questions :

(a) In $\triangle ABC$, ray BD bisects $\angle ABC$, A - D - C, seg $DE \parallel$ side BC, A - E - B, then for showing [3] $\frac{AB}{BC} = \frac{AE}{EB}$, complete the following activity:

Proof:

In
$$\triangle ABC$$
, ray *BD* bisects $\angle B$
 $\therefore \frac{\Box}{BC} = \frac{AD}{DC} \dots (i) (\Box)$
In $\triangle ABC, DE || BC$
 $\frac{\Box}{EB} = \frac{AD}{DC} \dots (ii) (\Box)$
 $\frac{AB}{\Box} = \frac{\Box}{EB} \dots [From(i)and(ii)]$

(b) Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

[8]

[3]

[3]