

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

GEOMERTY

Class 10 - Mathematics - II

Time Allowed: 2 hours

General Instructions:

Maximum Marks: 40

[8]

[1]

- 1. All questions are compulsory.
- 2. Use of a calculator is not allowed.
- 3. The numbers to the right of the questions indicate full marks.
- 4. In case of MCQs Q. No. 1(A) only the first attempt will be evaluated and will be given credit.
- 5. Draw proper figures wherever necessary.
- 6. The marks of construction should be clear. Do not erase them.
- 7. Diagram is essential for writing the proof of the theorem.

1.

- (a) Four alternative answers for each of the following sub-questions are given. Choose the correct alternative and write its alphabet:
 - i. In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure **[1]** of $\angle P$?

a)
$$60^{\circ}$$

c) 90°
ii. $1 + \tan^2 \theta = ?$
a) $\cot^2 \theta$
c) $\csc^2 \theta$
b) $\sec^2 \theta$
d) $\sin^2 \theta$

iii. Seg AB is parallel to X -axis and co-ordinates of the point A are (1,3), then the co-ordinates [1] of the point B can be _____.

c)
$$(-3,1)$$
 d) $(-5,3)$

iv. AP is a tangent at A drawn to the circle with center O from an external point P.OP = 12 cm [1] and $\angle OPA = 30^{\circ}$, then the radius of a circle is _____.

a) 6 cm	b) $12\sqrt{3}~cm$

c) 12 cm d) $6\sqrt{3}$ cm

(b) Solve the following sub-questions :

i. In the given figure, $\sec CB \perp \sec AB$, $\sec AD \perp \sec AB$. If BC = 4, AD = 8, then find [1] $\frac{A(\triangle ABC)}{A(\triangle ADB)}$.

iv. Angle made by the line with the positive direction of *X*-axis is 45° . Find the slope of that line. [1]

[12]

[2]

(a) **Complete any two activities and rewrite it :**

i. (

In the above figure, ray PQ touches the circle at point Q. If PQ = 12, PR = 8, find the length of seg *PS*.

- ii. A person is standing at a distance of 50 m from a temple looking at its top. The angle of [2] elevation is of 45° . Find the height of the temple.
- iii. How many solid cylinders of radius 6 cm and height 12 cm can be made by melting a solid [2] sphere of radius 18 cm?

Activity:

Radius of the sphere, r = 18 cm

For cylinder, radius R = 6 cm, height H = 12cm

. Number of cylinders can be made

$$= \frac{\text{Volume of the sphere}}{\frac{4}{3}\pi r^{3}}$$
$$= \frac{\frac{4}{3}\times 18 \times 18 \times 18}{\frac{4}{3}\times 18 \times 18 \times 18}$$
$$= \Box$$

(b) Solve any four of the following sub-questions :

i. (M) K

In the given figure, M is the centre of the circle and seg KL is a tangent segment. If $MK = 12, KL = 6\sqrt{3}$, then find Radius of the circle.

[2]

2.

2/5

- ii. In $\triangle ABC$, $AB = 9 \ cm$, $BC = 40 \ cm$, $AC = 41 \ cm$. State whether $\triangle ABC$ is a right-angled triangle or not? Write reason. [2]
- iii. In the following figure, O is the centre of the circle.

 $\angle ABC$ is inscribed in arc ABC and $\angle ABC = 65^{\circ}$. Complete the following activity to find the measure of $\angle AOC$. $\angle ABC = \frac{1}{2} m\Box$...[Inscribed angle theorem] $\Box \times 2 = m(\operatorname{arc} AXC)$ $m(\operatorname{arc} AXC) = \Box$ $\angle AOC = m(\operatorname{arc} AXC) \dots$ [Definition of measure of an arc] $\angle AOC = \Box$ Find the co-ordinates of the centroid of the $\triangle PQR$, whose vertices are P(3, -5), Q(4, 3)

- iv. Find the co-ordinates of the centroid of the $\triangle PQR$, whose vertices are P(3, -5), Q(4, 3) [2] and R(11, -4).
- v. Find the surface area of a sphere of radius 7 cm.

(a) Complete any one activity of the following and rewrite it :

i. In the given figure, *X* is any point in the interior of the triangle. Point *X* is joined to the **[3]** vertices of triangle. seg PQ || seg DE, seg QR || seg EF. Complete the activity and prove that seg PR || seg DF.

Proof:

In $\triangle XDE$, $PQ \| DE \dots [Given]$

 $\therefore \frac{XP}{PD} = \frac{\Box}{QE} \dots (i) \text{ [Basic proportionality theorem]}$

In $\triangle XEF$,

 $QR \parallel EF \dots$ [Given]

 $\frac{XQ}{\Box} = \frac{XR}{\Box}$...(ii) [\Box]

- $\therefore \frac{XP}{PD} = \frac{\Box}{\Box}$...[From (i) and (ii)]
- $\therefore \text{seg} PR \parallel \text{seg DF}$...[By converse of basic proportionality theorem]
- ii. In a circle with centre O, PA and PB are tangents from an external point P. E is the point on [3] the circle such that O -E-P. Tangent drawn at E intersects PA and PB in point C and D respectively. If PA = 10, then write the answers to the following questions:

i. Draw the suitable figure using given information.

[2]

[2]

[9]

ii. Write the relation between seg PA and seg PB

iii. Find the perimeter of $\triangle PCD$.

(b) Solve any two of the following sub-questions :

- If A(6,1), B(8,2), C(9,4) and D(7,3) are the vertices of $\Box ABCD$, show that $\Box ABCD$ is i. [3] a parallelogram.
 - Slope of line = $\frac{y_2 y_1}{x_2 x_1}$ ∴ Slope of line $AB = \frac{2-1}{8-6} = \Box$... (i) ∴ Slope of line $BC = \frac{4-2}{9-8} = \Box$... (ii) ∴ Slope of line $CD = \frac{3-4}{7-9} = \Box$... (iii) ∴ Slope of line $DA = \frac{3-1}{7-6} = \Box$... (iv)

 - \therefore Slope of line $AB = \Box \dots$ [From (i) and (iii)]
 - \therefore line *AB* || line CD
 - \therefore Slope of line $BC = \Box \dots$ [From (ii) and (iv)]
 - ∴ line BC || line DA

Both the pairs of opposite sides of the quadrilateral are parallel.

- $\therefore \Box ABCD$ is a parallelogram.
- Draw a circle with radius 4.2 cm. Construct tangents to the circle from a point at a distance of ii. [3] 7 cm from the centre.
- In $\triangle PQR$, point *S* is the midpoint of side *QR*. If PQ = 11, PR = 17, PS = 13, find *QR*. iii. [3]

4. Solve any two of the following sub-questions :

- -3, then find the value of θ . [4] $\frac{1}{\operatorname{cosec}^2 \theta} =$ (a) $\frac{1}{\sin^2 \theta}$ $-\frac{1}{\cos^2\theta}$ $\frac{1}{\tan^2 \theta}$ $-\frac{1}{\cot^2\theta}$ $\sec^2 \theta$
- In the given figure $\Box ABCD$ is a square of side 50 m. Points P, Q, R, S are midpoints of side AB, (b) [4] side *BC*, side *CD*, side *AD* respectively. Find area of shaded region.

- Draw a circle with centre P and radius 3 cm. Draw a chord MN of length 4 cm. Draw tangents to the [4] (c) circle through points M and N which intersect in point Q. Measure the length of segment PQ.
- 5. Solve any one of the following sub-questions :
 - In $\triangle PQR$, seg *PM* is a median. Angle bisectors of $\angle PMQ$ and $\angle PMR$ intersect side *PQ* and (a) [3] side PR in points X and Y respectively. Prove that XY || QR.

[8]

[3]

Similarly, in $\triangle PMR$, Ray MY is bisector o $\angle PMR$ $\therefore \frac{MP}{MR} = \frac{\Box}{\Box}$...(ii) [Theorem of angle bisector] But $\frac{MP}{MQ} = \frac{MP}{MR}$... (iii) [As M is the midpoint of QR] Hence MQ = MR $\frac{PX}{\Box} = \frac{\Box}{YR}$... [From (i), (ii) and (iii)] $\therefore XY ||QR ...$ [Converse of basic proportionality theorem]

(b) Prove that, tangent segments drawn from an external point to a circle are congruent.

[3]