

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

CHEMISTRY

MHT - CET - Chemistry

Time Allowed: 1 hour

Maximum Marks: 50

1.	If Avogadro number $\rm N_{A}$, is changed from 6.022 \times 10	$10^{23}\mathrm{mol}^{-1}$ to $6.022 imes10^{20}\mathrm{mol}^{-1}$, this would change	[1]
	·		
	a) the ratio of chemical species to each other in	b) the definition of mass in units of grams	
	a balanced equation		
	c) the mass of one mole of carbon	d) the ratio of elements to each other in a	
		compound	
2.	The number of electrons, protons and neutrons in P ³⁻	ion is respectively	[1]
	a) 15, 16, 18	b) 15, 15, 16	
	c) 15, 16, 15	d) 18, 15, 16	
3.	LiI is more covalent than LiCl because		[1]
	a) I ⁻ is larger anion than Cl ⁻	b) I is less electronegative than Cl	
	c) I is more electronegative than Cl	d) I ⁻ is smaller anion than Cl ⁻	
4.	Identify the INCORRECT statement regarding the fo	llowing reaction.	[1]
	$\mathrm{SeO}^{2-}_{3\mathrm{(aq)}}$ + $\mathrm{Cl}_2(\mathrm{g}) \longrightarrow \mathrm{SeO}^{2-}_{4\mathrm{(aq)}}$ + Cl^{aq} (basic)	X [*]	
	a) The oxidation number of oxygen remains	b) Se gets reduced while Cl gets oxidised.	
	unchanged.		
	c) Se acts as a reductant while Cl acts as an	d) Oxidation number of Se changes from +4 to	
	oxidant.	+6.	
5.	The alkaline earth metals Ba, Sr, Ca and Mg may be a enthalpy as	arranged in the order of their decreasing first ionization	[1]
	a) Ca, Sr, Ba, Mg	b) Sr, Ba, Mg, Ca	
	c) Mg, Ca, Sr, Ba	d) Ba, Mg, Ca, Sr	
6.	Hot air balloons float in air because of the low densit	y of the air inside the balloon. This can be explained with	[1]
	the help of		
	a) Gay Lussac's law	b) Avogadro's law	
	c) Charles' law	d) Boyle's law	
7.	is the process in which adsorbate molecule	s are held on the surface of the adsorbent by weak van der	[1]
	Waals forces.		

a) Biosorption b) Absorption c) Physisorption d) Chemisorption 8. When but-1-yne is treated with aqueous H₂SO₄ in presence of HgSO₄, the major product is ______. [1] a) $CH_3 - CH_2 - CH = CH_2$ b) CH₃ - CH₂ - CH₂ - CH₂ - OH c) CH₃ - CH₂ - CO - CH₃ d) CH₃ - CH₂ - CH₂ - CHO 9. The bond line or zig-zag formula for the adjacent compound is _____. [1] $N\equiv C-\stackrel{|}{\overset{|}{\underset{Cl}{Cl}}}-CH_2-C\equiv N$ a) _N c) 10. A corner particle contributes its _____ part to the given unit cell. [1] a) $\frac{1}{12}$ th c) $\frac{1}{8}$ th The atoms of element 'Y' form hexagonal close packing and the atoms of element X occupies $\frac{2}{3}$ rd portion of the [1] 11. number of tetrahedral voids. Write the formula of the compound formed by X and Y. b) $X_4 Y_3$ a) X_3Y_4 c) X₂Y d) X_2Y_2 $\rm Ni_{0.97}O_{1.0}$ is an example of 12. [1] a) interstitial impurity defect b) metal deficiency defect c) metal excess defect d) Frenkel defect 13. The boiling point of water (100 °C) becomes 100.52 °C, if 3 grams of a non-volatile solute is dissolved in 200 g [1] of water. The molecular weight of the solute is _____. (K_b for water is 0.52 K kg mol⁻¹) a) 15.0 g/mol b) 20.4 g/mol c) 12.2 g/mol d) 17.3 g/mol 14. Vapour pressure of CCl₄ at 25 °C is 143 mm of Hg. 0.5 g of a non-volatile solute (molecular mass = 65) is [1] dissolved in 100 mL CCI₄. Find the vapour pressure of the solution (Density of $CCl_4 = 1.58 \text{ g/cm}^3$). a) 94.39 mm b) 199.34 mm c) 141.93 mm d) 143.99 mm 15. Relative lowering of vapour pressure of a dilute solution of glucose dissolved in 1 kg of water is 0.002. [1] The molality of the solution is _____

a) 0.004	b) 0.222
c) 0.111	d) 0.021

16.	For which among the following reactions, change in	entropy is less than zero?	[1]
	a) Thermal decomposition of calcium carbonate	b) Dissociation of hydrogen	
	c) Formation of water	d) Sublimation of iodine	
17.	A minus sign of the free energy change denotes that		[1]
	a) the reaction tends to proceed spontaneously	b) the system is in equilibrium	
	c) the reaction is slow	d) the reaction is nonspontaneous	
18.	Values of standard enthalpies of formation for SiO_2 a	and MgO are - 48.4 and - 34.7 kJ mol ⁻¹ respectively. The	[1]
	standard enthalpy of the reaction		
	$2Mg_{(s)} + SiO_{2(s)} \rightarrow 2MgO_{(s)} + Si_{(s)}$ is		
	a) 13.7 kJ	b) -21.0 kJ	
	c) -13.7 kJ	d) 21.0 kJ	
19.	The heat of formations of $CO_{(g)}$ and $CO_{2(g)}$ are -26.4	kcal/mol and -94.0 kcal/mol respectively. The heat of	[1]
	combustion of carbon monoxide will be		
	a) - 20.6 kcal/mol	b) - 67.6 kcal/mol	
	c) + 52.8 kcal/mol	d) + 26.4 kcal/mol	
20.	Half life period of a first order reaction is 1386 second	nds. The rate constant of the reaction is	[1]
	a) $0.5 \times 10^{-3} \text{s}^{-1}$	b) $5.0 \times 10^{-2} \text{ s}^{-1}$	
	c) $0.5 \times 10^{-4} \text{s}^{-1}$	d) $5.0 \times 10^{-3} \text{s}^{-1}$	
21.	According to the collision theory of chemical reaction	ns,	[1]
	a) rate is directly proportional to the number of effective collisions	b) rate of reaction does not depend on the number of collisions	
	c) every molecular collision leads to a	d) the colliding molecules need to possess	
	chemical reaction	certain energy which is lower than the activation energy	
22.	Which one of the following orders is CORRECT for	the bond dissociation enthalpy of halogen molecules?	[1]
	a) F ₂ > Cl ₂ > Br ₂ > I ₂	b) $Br_2 > I_2 > F_2 > Cl_2$	
	c) $I_2 > Br_2 > Cl_2 > F_2$	d) $Cl_2 > Br_2 > F_2 > I_2$	
23.	The molecular formula of thiosulfuric acid is	·	[1]
	a) $H_2S_2O_3$	b) H ₂ S ₂ O ₇	
	c) H ₂ S ₂ O ₈	d) H ₂ SO ₃	
24.	Ozone is present as a chief constituent in which region	on of the atmosphere?	[1]
	a) Thermosphere	b) Troposphere	
	c) Stratosphere	d) Mesosphere	
			[1]

3/7

	The atomic number of cerium (Ce) is 58. The COR	RECT electronic configuration of Ce ³⁺ ion is	
	a) [Xe] 4f ¹³	b) [Xe] 4f ¹	
	c) [Kr] 4d ¹	d) [Kr] 4f ¹	
.	The purest form of commercial iron is		
	a) cast iron	b) pig iron	
	c) wrought iron	d) scrap iron arid pig iron	
•	is used to make ultra-high speed flight, f	fire proof bulkheads and exhaust shrouds.	
	a) Bronze	b) Titanium alloy	
	c) Nichrome	d) Cupra-nickel alloy	
	Identify the CORRECT decreasing order of ionic r	adii of lanthanoids.	
	a) Ce > Pm > Sm > Gd	b) Sm > Gd > Ce > Pm	
	c) Pm > Sm > Ce > Gd	d) $Gd > Pm > Ce > Sm$	
	Hexafluorocobaltate(III) ion is found to be high sp	in complex, the probable hybrid state of cobalt in it is	
	·		
	a) _{sp} ³	b) sp ³ d ²	
	c) _{sp} ³ d	d) d^2sp^3	
	Which of the following complex will not exhibit ci	is-trans isomerism?	
	a) [Co(NH ₃) ₄ Cl ₂] ²⁺	b) [Co(en) ₃]Cl ₃	
	c) [Co(en) ₂ (NH ₃)Cl]	d) [Pt(NH ₃)(H ₂ O)Cl ₂]	
•	The complex salt having the molecular compositio	n [Co(NO ₂)(SCN)(en) ₂]Br exhibits	
	a) linkage isomerism	b) ionization isomerism	
	c) all the these	d) cis-trans isomerism	
	In which of the following, the central atom does N	OT exhibit an oxidation state of +2?	
	a) $[Cu(NH_3)_4]^{2+}$	b) K ₄ [Fe(CN) ₆]	
	c) [Fe(C ₂ O ₄) ₃] ³⁻	d) K ₂ [Ni(CN) ₄]	
	Which one of the following compounds most readi	ly undergoes substitution by S_N^2 mechanism?	
	a) CH ₃ - CH ₂ - Cl	b) CH ₃	
		${}^{\mathrm{b)}}\mathrm{CH}_3- \stackrel{ }{\mathrm{C}}_{\mathrm{l}}-\mathrm{Cl}$	
		$\mathrm{C_{2}H_{5}}$	
	c) $(CH_3)_2 - C - H$	d) $\operatorname{CH}_3 - \operatorname{CH}_1 - \operatorname{Cl}_{\operatorname{C_2H}_5}$	
	CH - Cl	$ m C_2H_5$	
	<i>CH</i> ₃ Butanenitrile may be prepared by heating		

35. Which of the following structures represent allylic halides?

	I. $CH_2 = CH - CH_2 - X$		
	н. 💭 Х		
	III. X		
	IV. $CH_2 = CH - X$		
	a) II, III	b) I, IV	
	c) I, III	d) III, IV	
36.	$CH_3CH_2CH_2OH \xrightarrow{PCl_5} X \xrightarrow{ak.KOH} Y, where Y is \$		[1]
	a) propyne	b) propanol	
	c) propene	d) propane	
37.	The most suitable reagent for the conversion of R - C	$H_2 - OH \longrightarrow R - CHO $ is	[1]
	a) K ₂ Cr ₂ O ₇	b) PCC (Pyridinium chlorochromate)	
	c) KMnO ₄	d) CrO ₃	
38.	In the Williamson's synthesis for ethyl isopropyl ethe	r, which species works as a nucleophile?	[1]
	a) Sodium ethoxide	b) Ethyl chloride	
	c) Sodium isopropoxide	d) Isopropyl chloride	
39.	Which of the following is Resorcinol?	- Y	[1]
	a) OH	b) OH	
		ОН	
	γ	\bigcirc	
	OH OH	d) OH	
		\downarrow	
	ОН	$\left[O \right]$	
		но	
40.	The reaction between a carboxylic acid and alcohol in		[1]
	a) alkane	b) acid anhydride	
	c) ester	d) secondary alcohol	
41.	Iodoform can be prepared from all, EXCEPT		[1]
	a) butan-2-one	b) acetophenone	
	c) propan-1-ol	d) propan-2-ol	

[1]

1	$X \xrightarrow{ii.Na/C_2H_5OH} N-Methyleth$	un		_·	
	a) n-propyl chloride			b) chloroethane	
	c) isopropylchloride			d) chloromethane	
N	Match the following.		1		
	Column I		Column II		
	i. β -Methylpropylamine	a.	Mixed 2° amine		
	ii. Di-isopropylamine	b.	1° Amine		
ľ	iii. Dimethyl-sec-butylamie	c.	Simple 2° amine		
	iv. Ethylisopropylamine	d.	Mixed 3° amine		
	a) i - c, ii - d, iii - b, iv - a			b) i - b, ii - c, iii - d, iv - a	
	c) i - b, ii - d, iii - a, iv - c			d) i - d, ii - a, iii - b, iv - c	
F	Ethyl bromide when heated w	ith	alcoholic NH ₃ in a	sealed tube gives	
	I. ethylamine				
1	II. diethylamine				
I	II. triethylamine				
Γ	V. tetraethylammonium brom	ide			
	a) I, II and III			b) only I	
	c) I, II, III and IV			d) only III	
F	Acetic acid on heating with N	H ₃	forms A. When A r	eacts with $LiAlH_4$ followed by hydrolysis gives B. When B	
i	s heated with chloroform in k	(OF	I medium gives C.	What are B and C respectively?	
	a) CH ₃ CH ₂ CH ₂ NH ₂ , CH ₃	СН	₂ NC	b) CH ₃ CH ₂ NH ₂ , CH ₃ COOH	
	c) CH ₃ CONH ₂ , CH ₃ CH ₂ N	IC		d) CH ₃ CH ₂ NH ₂ , CH ₃ CH ₂ NC	
V	Which of the following does I	NO7	Г yield two monosa	ccharide units on hydrolysis?	
	a) Ribose		Y	b) Sucrose	
	c) Maltose			d) Lactose	
V	Which of the following set of	bas	es is present both ir	DNA and RNA?	
	a) Adenine, guanine, cytos	ine		b) Adenine, uracil, thymine	
	c) Adenine, guanine, uraci	l		d) Adenine, guanine, thymine	
V	Which of the following pair of	f m	onomers are used ir	the preparation of PHBV?	
	a) β -Hyrdoxyvaleric acid,	Am	inocaproic acid	b) Lactic acid, Adipic acid	
	c) β -Hydroxybutyric acid, acid	β-ŀ	ydroxyvaleric	d) β -Hydroxybutyric acid, Adipic acid	
V	Which of the following chemi	cal	species is used to v	ulcanize natural rubber?	

CONTACT:8830597066 | 9130946703

6/7

c) Sulfur

- 50. Which of the following is INCORRECT?
 - a. Polyethylene terephthalate is recycled to make furniture.
 - b. High-density polyethylene is recycled to make detergent bottles.
 - c. Polystyrene is used in making microwavable food trays.
 - d. Polypropylene is used in making ketchup bottles.
 - a) Option (a) b) Option (d)
 - c) Option (c)

d) Option (b)

