

SATISH SCIENCE ACADEMY

DHANORI PUNE-411015

CHEMISTRY

MHT - CET - Chemistry

Time Allowed: 1 hourMaximum Mar		ks: 50	
1.	What will be the mass of one atom of ¹² C?		[1]
	a) 1.6603×10^{-22} g	b) 1.9923×10^{-23} g	
	c) 1 a.m.u.	d) 6 a.m.u.	
2.	Neutron is a fundamental particle carrying		[1]
	a) no charge and having a mass of 1.00867	b) a unit positive charge and having a mass of	
	amu	1.00867 amu	
	c) a unit negative charge and having a mass of $$ $$	d) no charge and no mass	
	1.00727 amu		
3.	If the atomic number of element X is 7, the best elect	tron dot symbol for the element is	[1]
	a) •X•	b) : X :	
	c) X	d) • X •	
4.	Which of the following is CORRECT regarding redu	ictant?	[1]
	a) It undergoes reduction.	b) It accepts electron(s)	
	c) It undergoes increase in oxidation number.	d) It causes oxidation of the other chemical	
		species involved in the reaction.	
5.	Which among the following elements of group 2 exh	ibits anomalous properties?	[1]
	a) Ba	b) Mg	
	c) Be	d) Ca	
6.	A bubble of air is underwater at a temperature 15 $^{ m o}{ m C}$	and the pressure 1.5 bar. If the bubble rises to the surface	[1]
	where the temperature is 25 °C and the pressure is 1.	0 bar, what will happen to the volume of the bubble?	
	a) The volume will become greater by a factor	b) Volume will become greater by a factor of	
	of 2.5.	1.6.	
	c) Volume will become smaller by a factor of	d) Volume will become greater by a factor of	
	0.70.	1.1.	
7.	In case of oil in water emulsion, which of the follow	ing is NOT true?	[1]
	a) When oil is added, a separate layer is	b) When small amount of an electrolyte is	
	formed.	added, the emulsion becomes conducting.	
	c) Oil is continuous phase.	d) When water is added, water is readily	

miscible.

8. The CORRECT order decreasing acidity for the following is:

	a) $CH_2 = CH_2 > CH_3 - CH = CH_2 > CH_3 - C$	b) $CH_2 - CH \equiv C - H > CH \equiv CH > CH_2 =$	
	\equiv CH > CH \equiv CH	$CH_2 > CH_3 - CH_3$	
	c) CH \equiv CH > CH ₂ = CH ₂ > CH ₃ - C \equiv CH >	d) CH \equiv CH > CH ₃ - C \equiv CH > CH ₂ = CH ₂ >	
	CH ₃ - CH ₃	CH ₃ - CH ₃	
9.	Identify the functional group that has electron-donation	ng inductive effect.	[1]
	a) - CH ₃	b) - COOH	
	c) - CN	d) - NO ₂	
10.	Which of the following is FALSE about ionic solids?		[1]
	a. In a fused state, ionic solids do not conduct electri	icity.	
	b. In an aqueous solution, ionic solids conduct electr	ricity.	
	c. In solid-state, free electrons are available in ionic	solids.	
	d. In solid state, ionic solids do not conduct electricit	ty.	
	a) option (b)	b) option (a)	
	c) option (d)	d) option (c)	
11.	In a face-centred cubic lattice, atom A occupies the co	orner positions and atom B occupies the face centre	[1]
	positions. If one atom of B is missing from one of the	e face centered points, the formula of the compound is:	
	a) AB ₂	b) A ₂ B ₅	
	c) A ₂ B	d) A ₂ B ₃	
12.	Which among the following metal crystallize as a sim	nple cube?	[1]
	a) Copper	b) Iron	
	c) Polonium	d) Gold	
13.	The vapour pressure of pure liquid A is 70 torr at 27 °	°C. It forms an ideal solution with another liquid B. The	[1]
	mole fraction of B is 0.2 and the total vapour pressure	e of the solution is 84 torr at 27 °C. The vapour pressure of	
	pure liquid B at 27 °C is torr.		
	a) 56	b) 14	
	c) 70	d) 140	
14.	For sodium chloride dissolved in water, the van't Hof	ff factor (i) accounts for the extent of of the	[1]
	solute.		
	a) mobility	b) mole fraction	
	c) solubility	d) dissociation	
15.	The CORRECT relationship between the boiling poin	nts of very dilute solutions of $AICI_3(t_1)$ and $CaCl_2(t_2)$,	[1]
	having the same molar concentration is		
	a) t ₂ \geq t ₁	b) $t_1 = t_2$	

2/6

[1]

	c) $t_2 > t_1$	d) $t_1 > t_2$	
16.	Identify the intensive properties from the following	ğ.	[1]
	a) Volume and temperature	b) Specific heat and volume	
	c) Temperature and melting point	d) Heat capacity and temperature	
17.	In an isobaric process,		[1]
	a) $Q_P = \Delta U$	b) $Q_P = \Delta U - P_{ext} \Delta V$	
	c) $Q_{\rm P} = 0$	d) $Q_P = \Delta U + P_{ext} \Delta V$	
18.	The enthalpy change for the formation of 3.6 kg of	water is	[1]
	$\mathrm{H}_{2(\mathrm{~g})}+rac{1}{2}\mathrm{O}_{2(\mathrm{~g})}\longrightarrow\mathrm{H}_{2}\mathrm{O}_{(t)};\Delta\mathrm{H}$ = -284.5 kJ mol	-1	
	a) - 5690 kJ	b) - 284.5 kJ	
	c) 284.5 kJ	d) - 56900 kJ	
19.	The standard Gibbs free energy change, ΔG° , is re	elated to the equilibrium constant K _p as	[1]
	a) ΔG° = -RT In K _p	b) $\mathrm{K_p} = -rac{\Delta \mathrm{G}^\circ}{\mathrm{RT}}$	
	$^{ m C)}~{ m K}_{ m p}=\left(rac{{ m e}}{{ m RT}} ight)^{\Delta { m G}^{\circ}}$	d) K _p = - RT In ΔG°	
20.	Consider the reaction $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ T	the equality relationship between $\frac{d[\mathrm{NH}_3]}{dt}$ and $-\frac{d[\mathrm{H}_2]}{dt}$ is	[1]
	a) $rac{\mathrm{d}[\mathrm{NH}_3]}{\mathrm{dt}} = -rac{3}{2}rac{\mathrm{d}[\mathrm{H}_2]}{\mathrm{dt}}$	b) $\frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$	
	C) $\frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$	d) $\frac{\mathrm{d}[\mathrm{NH}_3]}{\mathrm{dt}} = -\frac{\mathrm{d}[\mathrm{H}_2]}{\mathrm{dt}}$	
21.	The reaction $N_2O_5 \rightarrow 2NO_2 + rac{1}{2} O_{2(g)}$ (in CCl ₄ (s	solution) solution) is of the first order in $\mathrm{N_2O_5}$ with rate	[1]
	constant 6.2 $ imes$ 10 ⁻¹ s ⁻¹ . What is the value of rate o	f reaction when $[N_2O_5] = 1.25 \text{ mol } L^{-1}$?	
	a) 3.85 x 10 ⁻¹ mol L ⁻¹ s ⁻¹	b) 6.35 x 10^{-3} mol L ⁻¹ s ⁻¹	
	c) 7.75 x 10 ⁻¹ mol L ⁻¹ s ⁻¹	d) 5.15 x 10 ⁻⁵ mol $L^{-1} s^{-1}$	
22.	Identify A and B respectively.		[1]
	$Xe + F_2 \xrightarrow{\text{Scaled Ni tube}} A$		
	$Xe+F_2 \xrightarrow[-80^\circ C]{ ext{Electric discharge}} B$		
	a) XeF ₂ , XeF ₂	b) XeF ₆ , XeF ₂	
	c) XeF ₂ , XeF ₄	d) XeF ₄ , XeF ₆	
23.	Oxidation state of Cl is +7 in		[1]
	a) chlorous acid	b) chloric acid	
	c) perchloric acid	d) hypochlorous acid	
24.	Na ₂ O is an example of oxide.		[1]
	a) acidic	b) neutral	

3/6

	c) basic	d) amphoteric	
25.	The following statements are CORRECT, EXCEPT _		[1]
	a) all d block elements are electropositive metals	b) most d-block elements are efficient catalyst	
	c) all d block elements are lustrous	d) all d block elements are soft metals	
26.	The following reactions take place in the blast furnace pertaining to the formation of slag.	e in the preparation of impure iron. Identify the reaction	[1]
	a) $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$	b) $2C_{(s)} + O_{2(g)} \longrightarrow 2CO_{(g)}$	
	c) $CaO_{(s)} + SiO_{2(s)} \longrightarrow CaSiO_{3(s)}$	d) $Fe_2O_{3(s)} + 3CO_{(g)} \longrightarrow 2Fe_{(l)} + 3CO_{2(g)}$	
27.	Mn^{2+} compounds are more stable than Fe^{2+} compour	nds towards oxidation to their +3 state, because	[1]
	 a) Mn²⁺ is more stable with high 3rd ionization energy 	b) Mn ²⁺ is bigger in size	
	c) Mn ²⁺ does not exist	d) Mn ²⁺ has completely filled d-orbitals	
28.	The valence shell electronic configuration of Cr ²⁺ ior	1 is	[1]
	a) _{3d} 5	b) 3d ²	
	c) 3d ⁰	d) _{3d} ⁴	
29.	Bidentate ligand is		[1]
	a) ethylenediamine	b) EDTA	
	c) <i>NO</i> ₃	d) SCINT	
30.	A discrete structural unit in which central metal ion a	nd ligands linked to it are enclosed in a square bracket is	[1]
	called		
	a) coordination sphere	b) counter ion	
	c) coordination number	d) ligand	
31.	Which of the following complexes is an outer orbital (Atomic numbers: $Mr = 25$: $F_0 = 26$: $C_0 = 27$: $Ni = 2$	complex?	[1]
	(Atomic numbers: $MII = 25$; $Fe = 26$; $C0 = 27$; $NI = 2$	6) 	
	a) [Mn(CN) ₆] ⁴⁻	b) $[Ni(NH_3)_6]^{2+}$	
	c) [Co(NH ₃) ₆] ³⁺	d) [Fe(CN) ₆] ⁴⁻	
32.	The following ligand is		[1]
	N 2		
	a) hexadentate	b) bidentate	
	c) tridentate	d) tetradentate	

c) C₂H₅OH

33.	Consider the following wedge formula.		[1]
	F C		
	Br W		
	H According to the representation, which bond lies belo	w the plane of the paper?	
	a) C - Br	b) C - H	
	c) C - Cl	d) C - F	
34.	An example of a sigma bonded organometallic compo	ound is	[1]
	a) cobaltocene	b) ruthenocene	
	c) ferrocene	d) Grignard's reagent	
35.	Which of the following halide shows the highest react	tivity towards S_N1 reaction?	[1]
	a) $CH_3 - CH_2 - CH_2 - CH_2Cl$	b) C ₆ H ₅ Cl	
	c) CH ₃ - CH ₂ Cl	d) C ₆ H ₅ CH ₂ Cl	
36.	Conversion of benzene diazonium salt to phenol invo	lves	[1]
	a) hydration	b) hydrolysis	
	c) decomposition	d) decarboxylation	
37.	Nitration reaction of phenol is		[1]
	a) aromatic elimination reaction	b) aromatic nucleophilic substitution reaction	
	c) aromatic addition reaction	d) aromatic electrophilic substitution reaction	
38.	Which of the following alcohols undergo acid catalys	ed dehydration to alkenes most readily?	[1]
	a) (CH ₃) ₃ COH	b) CH ₃ CH ₂ CH ₂ OH	
	c) CH ₃ CHOHCH ₃	d) (CH ₃) ₂ CHCH ₂ OH	
39.	Ethyl alcohol when treated with cone. H_2SO_4 gives _	at 443 K and at 413 K.	[1]
	a) ethylene, ethanal	b) ethoxyethane, ethylene	
	c) ethylene, ethoxyethane	d) ethanal, ethylene	
40.	Which of the following compound undergoes aldol co	ondensation?	[1]
	a) Trimethyl acetaldehyde	b) Acetaldehyde	
	c) Trichloro acetaldehyde	d) Formaldehyde	
41.	A compound 'D' on hydrolysis, formed acetamide wh	nich on further hydrolysis gives acetic acid and NH ₃ . The	[1]
	compound 'D' is		
	a) $CH_3C \equiv N$	b) C ₂ H ₅ I	

d) C₂H₅ONa

- 42. Identify the INCORRECT statement.
 - A. Azo group can be represented as, N = N-.

B. Azo coupling reaction is a nucleophilic aromatic substitution reaction.

- C. Azo coupling with β -naphthol in NaOH is used as a confirmatory test for primary aromatic amines.
- D. The acid-base indicator methyl orange is an azo dye.
 - a) Option (C) b) Option (D)
 - c) Option (A) d) Option (B)
- 43. Azo coupling reaction with respect to aniline takes place at position number _ [1] a) 2 b) 1 c) 3 d) 4 44. Hexamethylenediamine is an example of [1] b) 1° amine a) quaternary ammonium salt d) 3° amine c) 2° amine 45. [1] Ethanamine on acetylation using ethanoyl chloride gives a) N,N-dimethylethanamide b) N-ethylethanamide d) N-methylethanamide c) N,N-diethylethanamide [1] Which carbon atom of deoxy ribose sugar in DNA does NOT contain -46. - OH bond? -Ca) C₂ b) C₅ c) C₁ d) C3 47. Oligosaccharides on hydrolysis yield [1] units of monosaccharides. a) ten to twelve b) two c) two to ten d) ten to fifteen 48. A molecule or group of molecules which are repeated to get a polymer is termed as _ [1] b) dimer a) tetramer c) monomer d) oligomer 49. Orlon is an example of _____ [1] a) condensation polymer b) copolymer c) addition polymer d) natural polymer [1] 50. Aging of the gel means the gel transforms into a _ a) oily liquid b) liquid c) gaseous state d) solid mass