Solution

ALGEBRA

Class 10 - Mathematics - I

```
1. (i) Choose the correct alternative from given :
```

```
i. (d) x^2 + 4x = 11 + x^2

Explanation:

x^2 + 4x = 11 + x^2

\therefore x^2 - x^2 + 4x = 11

\therefore 4x = 11 \dots (i)

Equation (i) is a linear equation as degree of equation is 1.

\therefore x^2 + 4x = 11 + x^2 is not a quadratic equation.
```

ii. **(d)** 2

Explanation:

```
Putting y = 1 in x + 2y = 4, we get

x + 2(1) = 4

\therefore x + 2 = 4

\therefore x = 2
```

```
iii. (c) 55
```

```
Explanation:
```

```
First 10 natural numbers are 1, 2, 3, \ldots, 9, 10.
```

```
The above sequence is an A.P. \therefore t_1 = 1, t_{10} = 10
```

```
\begin{array}{l} \therefore S_n = \frac{n}{2}(t_1 + t_{10}) = \frac{10}{2}(1 + 10) \\ = 5(11) \\ = 55 \end{array}
```

iv. (d) CGST Explanation:

CGST

(ii) 17x + 15y = 1115x + 17y = 21

```
2x - 2y = -10

\therefore x - y = -5 \dots[Dividing both sides by 2]

ii. a = t_1 = 6, d = -3

\therefore t_2 = t_1 + d = 6 - 3 = 3

t_3 = t_2 + d = 3 - 3 = 0

iii. Brokerage paid on one share = 2\% of MV

= \frac{2}{100} \times 150
```

iv. (a) $\frac{1}{6}$

Explanation:

```
Sample space (S) = \{1, 2, 3, 4, 5, 6\}

n(S) = 6

Let A be the event that the number appearing on upper face of the die is less than 2.

\therefore A = \{1\}

\therefore n(A) = 1

\therefore P(A) = \frac{n(A)}{n(S)}

\therefore P(A) = \frac{1}{6}
```

2. (i) Complete the following activities and rewrite it (any two) :

i. First term =
$$a = 6$$
, common difference = $d = 3$, $S_{27} = ?$
 $S_n = \frac{5}{2} \left[\frac{2a}{2a} + (n - 1)d \right]$
 $\therefore S_{27} = \frac{27}{2} \left[12 + (27 - 1)\overline{3} \right]$
 $= \frac{7}{3} \times 90 = 27 \times 45$
 $\therefore S_{27} = \overline{1225}$
ii. $x^2 + 8x + 15 = 0$
 $\therefore x^2 + 5x + 3s + 15 = 0$
 $\therefore x(x + 5) = 3(x + 5) = 0$
 $\therefore (x + 5)(x + 3) = 0$
 15
 $+5$ $+3$
 $+5$ $+3 = +15$
 $+5 + 3 = +8$
By using the property. if the product of two numbers is zero, then at least one of them is zero, we get
 $x - 5 = 0$ or $x + 3 = 0$
 $\therefore x = -5$ or $x = -3$
 \therefore The roots of the given quadratic equation are -5 and -3 .
iii. Total number of pens in the box
 $-5 + 8 + 3 = 16$
 $\therefore n(A) = 8$
 $\therefore n(A) = 8$
 $\therefore n(A) = \frac{1}{2}$
 \therefore The probability that Rutuja picks a blue pen.
Total number of blue pens $= 8$
 $\therefore n(A) = \frac{1}{2}$
 \therefore The probability that Rutuja picks a blue pen is $\frac{1}{2}$.
(ii) Solve the following subquestions (any four)?
i. $x = y = 6$...(i)
 $x = y = 6$...(ii)
Adding equations (i) and (ii), we get
 $\frac{x + y - 6}{4} + \frac{x + y - 6}{2x = 10}$
 $\therefore x = \frac{10}{2} = 5$
Substituting $x = 5$ in equation (i), we get
 $5 - y = 6$
 $\therefore y = 6 - 5 = 1$
 $\therefore (x, y) = (5, 1)$ is the solution of the given simultaneous equations.
ii. Let $\alpha = -3$ and $\beta = -7$
 $\therefore \alpha + \beta = -3 - 7 = -10$
and $\alpha = (-3)(-7) = 21$
 \therefore The required quadratic equation is
 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$
 $\therefore x^2 - (10)x + 21 = 0$
 $\therefore x^2 + 10x + 21 = 0$
ii. $a - 10, d = 5$...[Given]
 $\therefore t_1 = a - 10$
 $b_2 = t_1 + d = 10 + 5 = 15$
 $t_3 = t_2 + d = 15 + 5 = 20$
 $t_4 = t_5 + d = 20$ $t_5 = 4 = 25$

 \therefore The required A.P. is $10, 15, 20, 25, \dots$

iv. Suppose S is sample space.

 $\therefore n(S) = 52$

Event A: Card drawn is a red card.

∴ Total red cards = 13 hearts + 13 diamonds
∴
$$n(A) = 26$$

 $P(A) = \frac{n(A)}{n(S)}$
∴ $P(A) = \frac{26}{52}$
∴ $P(A) = \frac{1}{2}$

v.	Class (Number of hours daily)	Frequency (Number of workers)	Cumulative frequency (less than)
	8-10	150	150
	10-12	500	150 + 500 = 650
	12-14	300	650 + 300 = 950
	14-16	50	950 + 50 = 1000
	Total	N = 1000	-

3. (i) Complete the following activity and rewrite it (any one) :

i. Measure of central angle (θ) = $\frac{\text{Number of scores in the components}}{\text{Total number of scores}} \times 360^{\circ}$

Item	No. of people	Measure of central angle ($ heta$)
Pizza	70	$rac{70}{180} imes 360^\circ = 140^\circ$
Burgers	60	${60\over 180} imes 360^\circ = 120^\circ$
Chips	50	${50\over 180} imes 360^\circ = 100^\circ$
Total	180	360°

ii. Printed price of dress = ₹2000,

Rate of discount = 5%

Amount of discount = 5% of Printed price

 $=rac{5}{100} imes 2000$

Taxable value = Printed price - Discount

- = 2000 100
- =₹1900

Rate of GST = 5%

 \therefore GST = 5% of taxable value

$$=\frac{5}{100} \times 1900$$

 \therefore Purchase price of the dress = Taxable value + GST

= 1900 + 95

= ₹1995

∴ The purchase price of the dress for the customer is ₹ 1995.

(ii) Solve the following subquestions (any two) :

i. $5m^2 + 13m + 8 = 0$ Comparing the above equation with $am^2 + bm + c = 0$, we get a = 5, b = 13, c = 8 $b^2-4ac=(13)^2-4 imes5 imes8$ = 169 - 160 = 9 $-b\pm\sqrt{b^2-4ac}$ 13 +2(5)13 +10 :. $m = \frac{-13+3}{10}$ or $m = \frac{-16}{10}$:. $m = \frac{-10}{10}$ or $m = \frac{-16}{10}$ $^{-16}$ $\therefore m = -1 \text{ or } m = \frac{-\alpha}{5}$ \therefore The roots of the given quadratic equation are -1 and $\frac{-8}{5}$ ii. (3, -1) is the point of intersection of the lines ax + by = 9 and bx + ay = 5 \therefore Point (x, y) = (3, -1) satisfies the two equations. ax + by = 9 ...(i) bx + ay = 5 ...(ii) \therefore Putting x = 3 and y = -1 in the above equations, we get 3a - b = 9 ...(iii) 3b - a = 5 ...(iv) Multiplying equation (iv) by 3, we get -3a + 9b = 15 ...(v) Adding equations (iii) and (v), we get 3a - b = 9-3a+9b=158b = 24 $\therefore b = \frac{24}{8}$ $\therefore b = 3$ Putting b = 3 in equation (iii), we get 3a - b = 9 $\therefore 3a-3=9$ $\therefore 3a = 9 + 3$:: 3a = 12 $\therefore a = 4$ $\therefore a = 4$ and b = 3iii. Taxable value of 1 tin = $\gtrless 2,800$ \therefore Taxable value of 2 tins = 2 × 2,800 =₹5,600 Rate of GST = 28% \therefore Rate of CGST = Rate of SGST = 14% CGST = 14% of taxable value $=rac{14}{100} imes 5,600$ ∴ CGST = ₹784 \therefore SGST = CGST = ₹784∴ The amount of CGST and SGST charged in the tax invoice is ₹784 each. iv. Let the 3 red balls be R_1, R_2, R_3 , 3 black balls be B_1, B_2, B_3 ,

3 white balls be W_1, W_2, W_3 , 3 green balls be G_1, G_2, G_3 .: Sample space, $S = \left\{ R_1, R_2, R_3, \; B_1, \; B_2, \; B_3, \; W_1, \; W_2, \; W_3 \; , \; G_1, G_2, G_3
ight\}$ $\therefore n(S) = 12$ i. Let *A* be the event that the ball drawn is white. $\therefore A = \{W_1, W_2, W_3\}$ $\therefore n(A) = 3$ $\therefore P(A) = \frac{n(A)}{n(S)} = \frac{3}{12} = \frac{1}{4}$ $\therefore P(A) = \frac{1}{4}$ ii. Let B be the event that the ball drawn is not white. $\therefore B = \{R_1, R_2, R_3, B_1, B_2, B_3, G_1, G_2, G_3\}$ $\therefore n(B) = 9$ $\therefore P(B) = \frac{n(B)}{n(S)} = \frac{9}{12} = \frac{3}{4}$ $\therefore P(B) = \frac{3}{4}$ 4. Solve the following subquestions (any two) : (i) Let the two numbers be x and y. According to the first condition, Product of two numbers is 352 $\therefore xy = 352$ $\Rightarrow y = \frac{352}{x}$...(i) According to the second condition, Mean = 19 $\therefore \frac{x+y}{2} = 19$ $\therefore x + y = 38$ Substituting the value of y from equation (i), we get $\therefore x + \frac{352}{x} = 38$ $\therefore x^2 + 352 = 38x$ $\therefore x^2 - 38x + 352 = 0$ $\therefore x^2 - 22x - 16x + 352 = 0$ $\therefore x(x-22) - 16(x-22) = 0$ $\therefore (x-16)(x-22) = 0$ $\therefore x - 16 = 0 \text{ or } x - 22 = 0$ $\therefore x = 16 \text{ or } x = 22$ 352 -22 -16 $(-22) \times (-16) = 352$ -22 - 16 = -38 ∴ $y = \frac{352}{16}$ or $y = \frac{352}{22}$...[From (i)] $\therefore y = 22$ or y = 16∴ The required numbers are 16, 22 or 22, 16. (ii) Total percentage of world population = 100

Measure of central angle (θ) = $\frac{Percentage of components}{100} \times 360^{\circ}$

Country	Percentage of total population	Measure of central angle ($ heta$)
Japan	20	${20\over 100} imes 360^\circ=72^\circ$
England	10	${10\over 100} imes 360^\circ=36^\circ$
India	40	${40\over 100} imes 360^\circ=144^\circ$
China	30	${30\over 100} imes 360^\circ = 108^\circ$

: Amount of the first instalment is 495 and that of the last instalment is 405.

5. Solve the following subquestions (any one) :

(ii) The given simultaneous equations are

Equations (i) and (ii) are in ax + by = c form.

Comparing the given equations with $a_1x + b_1y = c_1$ and $a_2x + b_2y = c_2$, we get $a_1 = 3, b_1 = -4, c_1 = 10$ and $a_2 = 4, b_2 = 3, c_2 = 5$

$$\begin{aligned} u_2 &= 4, b_2 = 3, c_2 = 3 \\ \therefore D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \begin{vmatrix} 3 & -4 \\ 4 & 3 \end{vmatrix} = (3 \times 3) - (-4 \times 4) \\ &= 9 - (-16) \\ &= 9 + 16 = 25 \neq 0 \\ D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = \begin{vmatrix} 10 & -4 \\ 5 & 3 \end{vmatrix} = (10 \times 3) - (-4 \times 5) \\ &= 30 - (-20) \\ &= 30 + 20 = 50 \\ D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = \begin{vmatrix} 3 & 10 \\ 4 & 5 \end{vmatrix} = (3 \times 5) - (10 \times 4) \\ &= 15 - 40 = -25 \\ \therefore \text{ By Cramer's rule, we get} \\ x = \frac{D_x}{D} \text{ and } y = \frac{D_y}{D} \\ \therefore x = \frac{50}{25} \text{ and } y = \frac{-25}{25} \\ \therefore x = 2 \text{ and } y = -1 \\ \therefore (x, y) = (2, -1) \text{ is the solution of the given simultaneous equations.} \end{aligned}$$