Solution

ALGEBRA

Class 10 - Mathematics - I

```
(i) Choose the correct alternative from given :
1.
                  (d) x(x+5) = 4
             i.
                  Explanation:
                  x(x+5) = 4
                  \therefore x^2 + 5x - 4 = 0
                  Here, x is the only variable and maximum index of the variable is 2.
                  a=1, \ b=5, c=-4 are real numbers and a \neq 0.
            ii.
                  (a) 3
                  Explanation:
                  Substituting x = 1 in 4x + 5y = 19, we get
                  4(1) + 5y = 19
                  \therefore 5y = 19 - 4 = 15
                  \therefore y = \frac{15}{5} = 3
           iii.
                  (c) 3.5
                  Explanation:
                  t_n = a + (n-1)d
                  = 3.5 + (n-1)0
                  = 3.5 + 0
                  = 3.5
                  (d) 15
           iv.
                  Explanation:
                  15
                  15x + 17y = 21
       (ii)
            1. + 17x + 15y = 11
                   32x + 32y = 32
               \therefore \boldsymbol{x} + \boldsymbol{y} = 1 ...[Dividing both sides by 32]
            ii. t_n = 3n - 2
               \therefore t_1 = 3(1) - 2
               = 3 - 2 = 1
           iii. Rate of CGST = 9\%
               But, rate of SGST = rate of CGST
               \therefore Rate of SGST = 9%
               Rate of GST = Rate of SGST + Rate of CGST
               = 9\% + 9\%
               \therefore Rate of GST = 18%
           iv.
                  (c) 10
                  Explanation:
                  P(A) = rac{n(A)}{n(S)}
\therefore rac{1}{5} = rac{2}{n(S)}
                  \therefore n(S) = 10
2.
       (i) Complete the following activities and rewrite it (any two) :
             i. The first n even natural numbers are 2, 4, 6, \ldots, 2n.
               The above sequence is an A.P.
               t_1 = first term = 2, t_n = last term = 2n
```

$$= \frac{n}{2}(2+2n)$$

$$= \frac{n}{2} \times 2(1+n) = n(n+1)$$

$$\therefore \text{ The sum of first n even natural numbers is } n(n+1).$$
ii. $x^2 - 15x + 54 = 0$

$$\therefore x^2 - 9x - 6x + 54 = 0$$

$$\therefore x(x-9) - 6(x-9) = 0$$

$$\therefore (x-9)(x-6) = 0$$

$$54$$

$$-9 \times -6 = +54$$

$$-9 - 6 = -15$$
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get $x - 9 = 0$ or $x - 6 = 0$

$$\therefore x = 9 \text{ or } x - 6 = 0$$

$$\therefore x = 9 \text{ or } x - 6 = 0$$

$$\therefore x = 9 \text{ or } x - 6 = 0$$

$$\therefore \text{ The roots of the given quadratic equation are 9 and 6.$$
iii. Two coins are tossed simultaneously.

$$\therefore \text{ Sample space is}$$

$$S = \{[\underline{HH}], HT, TH, [\underline{TT}]\}$$
Event A: To get at least one head.

$$\therefore A = \{[\underline{HH}], HT, TH\}$$
Event B: To get no head.

$$\therefore B = \{[\underline{TT}]\}$$
(ii) Solve the following subquestions (any four):
i. The given simultaneous equations are

i. The given simultaneous equations are

$$3x + 5y = 26 \dots (i)$$

 $x + 5y = 22 \dots (ii)$
Equations (i) and (ii) are in $ax + by = c$ form.
 $D_x = \begin{vmatrix} 26 & 5 \\ 22 & 5 \end{vmatrix} = (26 \times 5) - (22 \times 5)$
 $= 130 - 110$
 $= 20$
 $D_y = \begin{vmatrix} 3 & 26 \\ 1 & 22 \end{vmatrix} = (3 \times 22) - (1 \times 26)$
 $= 66 - 26$
 $= 40$
I am a quadratic equation
My standard form is $ax^2 + bx + c = 0$
 $bx^2 + bx + c$

$$\therefore 84 = (n-1)4$$

$$\therefore n - 1 = \frac{84}{4}$$

$$\therefore n - 1 = 21$$

$$\therefore n = 21 + 1 = 22$$

iv. If two coins are tossed simultaneously,
$$S = \{HH, HT, TH, TT\}$$

i. Event A : at least getting one head.
$$\therefore A = \{HH, HT, TH\}$$

ii. Event B : to get no head.
$$B = \{TT\}$$

v. Mean $(\overline{X}) = \frac{\sum x_i f_i}{N} = \frac{1265}{50} = 25.3$

3. (i) Complete the following activity and rewrite it (any one) :

i.	Class No. of Mangoes	Frequency (No. of trees)	Cumulative frequency (less than)
	50-100	33	33
	100-150	30	63 ightarrow cf
	150-200	90 ightarrow f	153
	200-250	80	233
	250-300	17	250
	Total	250	

Here, total frequency $=\Sigma f_i = N = 250$

$$\therefore \frac{N}{2} = \frac{250}{2} = 125$$

Cumulative frequency which is just greater than (or equal) to 125 is 153.

 \therefore The median class is 150-200.

Now,
$$L = 150, f = 90, cf = 63, h = 50$$

: Median =
$$L + \left\lfloor \frac{\frac{N}{2} - cf}{f} \right\rfloor h = 150 + \left(\frac{125 - 63}{90} \right) 50 = 150 + 34.4 = 184.4 \approx 184$$

... The median of the given data is 184 mangoes (approx.)

ii.
$$FV =$$
₹100; Number of shares = 150

Market value = ₹120

i. i. Sum investment $= MV \times$ No. of Shares

$$=$$
 120 \times 150

- ∴ Sum investment = ₹18,000
- ii. Dividend per share $= FV \times \text{ Rate of dividend}$

$$= \boxed{100} \times \frac{\boxed{7}}{100} = ₹7$$

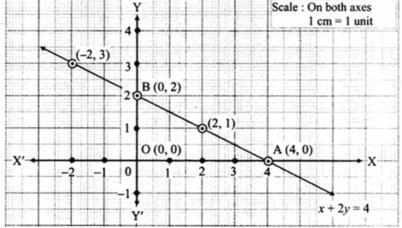
$$\therefore$$
 Total dividend received = 150×7

$$= 1050$$

iii. Rate of return =
$$\frac{\text{Dividend income}}{\text{Sum invested}} \times 100$$

= $\frac{1,050}{18,000} \times 100 = 5.83\%$

(ii) Solve the following subquestions (any two) :


i.
$$3m^2 - m - 10 = 0$$

Comparing the above equation with $am^2 + bm + c = 0$, we get
 $a = 3, b = -1, c = -10$
 $\therefore b^2 - 4ac = (-1)^2 - 4 \times 3 \times (-10)$
 $= 1 + 120$
 $= 121$
 $m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{121}}{2(3)} = \frac{1 \pm 11}{6}$
 $\therefore m = \frac{1 + 11}{6}$ or $m = \frac{1 - 11}{6}$

$$\therefore m = \frac{12}{6} \text{ or } m = \frac{-10}{6}$$
$$\therefore m = 2 \text{ or } m = \frac{-5}{3}$$

 \therefore The roots of the given quadratic equation are 2 and $-\frac{5}{3}$.

ii.
$$x + 2y = 4$$

 $\therefore y = \frac{4-x}{2}$

$y = \frac{1}{2}$						
x	-2	0	2	4		
y	3	2	1	0		
(x,y)	(-2,3)	(0,2)	(2,1)	(4, 0)		

From the graph, we get riangle OAB, where OB is the height and OA is the base.

Area of triangle $=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times l(OA) \times l(OB)$

$$= \frac{1}{2} \times l(OA) \times l(OA) = \frac{1}{2} \times 4 \times 2$$

$$= \stackrel{2}{4}$$
 sq. units

iii. Printed price of dress = $\gtrless 2000$

Rate of discount = 5%

Amount of discount = 5% of Printed price

$$=\frac{5}{100} \times 2000$$

Taxable value = Printed price - Discount

$$= 2000 - 100$$

=₹1900

Rate of GST = 5%

$$\therefore$$
 GST = 5% of taxable value

$$=\frac{5}{100} \times 1900$$

- \therefore GST = ₹ 95
- \therefore Purchase price of the dress = Taxable value + GST
- = 1900 + 95
- =₹1995

∴ The purchase price of the dress for the customer is ₹ 1995.

- iv. Let the 2 red balloons be R_1, R_2 ,
 - 3 blue balloons be B_1, B_2, B_3 , and
 - 4 green balloons be G_1, G_2, G_3, G_4 .

∴ Sample space

$$S = \{R_1, R_2, B_1, B_2, B_3, G_1, G_2, G_3, G_4\}$$

$$\therefore n(S) = 9$$

i. Let A be the event that Pranali gets a red balloon.

$$\therefore A = \{R_1, R_2\}$$

 $\therefore n(A) = 2$

$$\therefore P(A) = rac{n(A)}{n(S)}$$

 $\therefore P(A) = rac{2}{9}$

ii. Let B be the event that Pranali gets a blue balloon.

$$\therefore B = \{B_1, B_2, B_3\}$$
$$\therefore n(B) = 3$$
$$\therefore P(B) = \frac{n(B)}{n(S)} = \frac{3}{9}$$
$$\therefore P(B) = \frac{1}{3}$$

iii. Let C be the event that Pranali gets a green balloon.

$$\therefore C = \{G_1, G_2, G_3, G_4\}$$
$$\therefore n(C) = 4$$
$$\therefore P(C) = \frac{n(C)}{n(S)}$$
$$\therefore P(C) = \frac{4}{9}$$

4. Solve the following subquestions (any two) :

(i) Let the initial speed of the train be $x \ km/hr$.

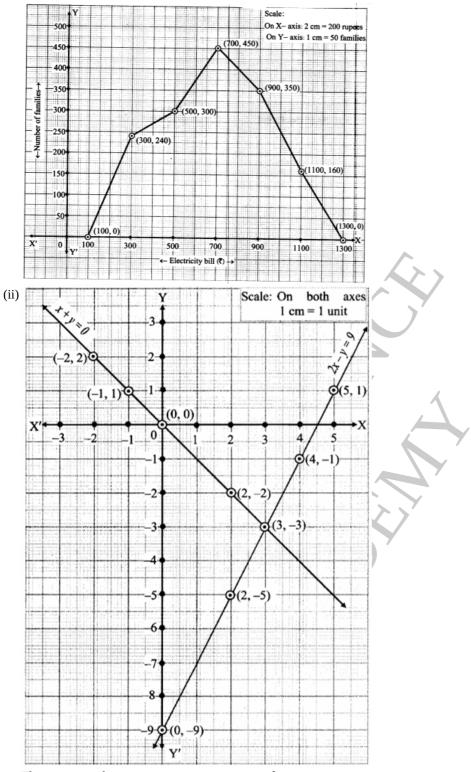
 \therefore New speed is (x + 12)km/hr. Time to cover 240 $km = \frac{\text{distance}}{\text{speed}} = \frac{240}{x}$ hours New time after increasing speed $=\frac{240}{x+12}$ hours According to the given condition, 240 $=\frac{240}{-1}$ x + 12 $\bar{240}$ 240= 1 $\frac{1}{240}$. . . [Dividing both sides by 240] = x + 12 $\frac{x}{x+12-x} =$ $\frac{1}{240}$ x(x+12) $\frac{12}{x^2+12x} = \frac{1}{240}$ $\therefore x^2 + 12x = 2880$ $\therefore x^2 + 12x - 2880 = 0$ $\therefore x^2 + 60x - 48x - 2880 = 0$ $\therefore x(x+60) - 48(x+60) = 0$ - 2880 - 48 60 $60 \times (-48) = -2880$ 60 - 48 = 12 $\therefore (x+60)(x-48)=0$ $\therefore x + 60 = 0 \text{ or } x - 48 = 0$ $\therefore x = -60$ or x = 48But, speed cannot be negative. $\therefore x \neq -60$ \therefore The initial speed of the train is $48 \ km/hr$. (ii) Total number of students = 180 $\therefore 25 + x + 30 + 2x + 65 = 180$ $\therefore 3x + 120 = 180$ $\therefore 3x = 180 - 120$ $\therefore 3x = 60$ $\therefore x = \frac{60}{3}$

 $\therefore oldsymbol{x} = 20$

Marks	Number of Students
0 - 10	25
10 - 20	x = 20

20-30	30
30-40	2x=2 imes 20=40
40-50	65
Scale: On X- axis: 1 cm = 10 On Y-axis: 1 cm = 10 70^{+} 7) marks

(iii)The amounts invested by Kavita everyday in the month of February 2020 are as follows:


 $20, 40, 60, \dots$

The above sequence is an A.P. $\therefore a = 20, d = 40 - 20 = 20 ,$ $n = 29 \dots [\because 2020 \text{ is a leap year }]$ $S_n = \frac{n}{2} [2a + (n - 1)d]$ $\therefore S_{29} = \frac{29}{2} [2(20) + (29 - 1)20]$ $= \frac{29}{2} (40 + 28 \times 20)$ $= \frac{29}{2} (40 + 560)$ $= \frac{29}{2} (600)$ $= 29 \times 300$ $\therefore S_{29} = 8700$

∴ Kavita's total savings in the month of February 2020 is ₹ 8700.

5. Solve the following subquestions	(anv one) :
	(

(i)	Class Electricity bill (₹)	0 - 200	200 - 400	400 - 600	000 - 800	800 - 1000	1000 - 1200	1200 - 1400
	Class mark	100	300	500	700	900	1100	1300
	Frequency (Families)	0	240	300	450	350	160	0
	Co-ordinates of points	(100, 0)	(300, 240)	(500, 300)	(700, 450)	(900, 350)	(1100, 160)	(1300, 0)

The given simultaneous equations are x + y = 0

•	21	_	_ r
• •	g	_	-x

Х	0	2	-2	-1
у	0	-2	2	1
(x, y)	(0, 0)	(2,-2)	(-2,2)	(-1,1)

2x - y = 9 $\therefore y = 2x - 9$

X	0	2	5	4
у	-9	-5	1	-1
(x, y)	(0, -9)	(2, -5)	(5,1)	(4, -1)

The two lines intersect at point (3, -3). $\therefore x = 3$ and y = -3 is the solution of the simultaneous equations x + y = 0 and 2x - y = 9.