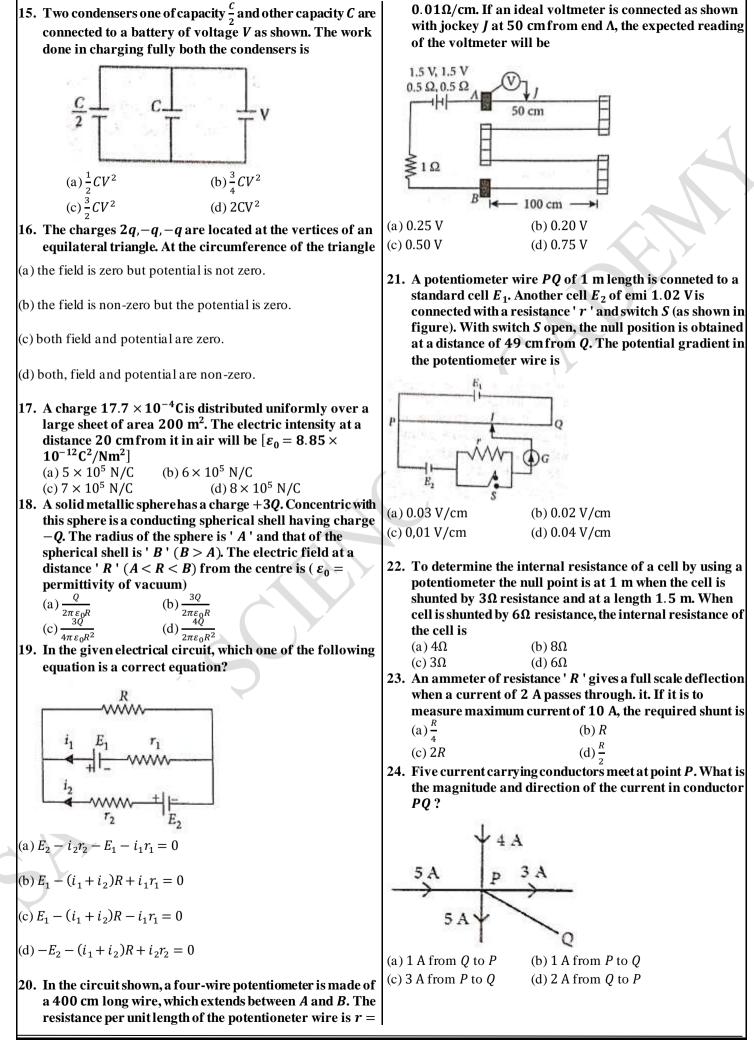
SATISH SCIENCE ACADEMY

Where We Shape The Career

Time :45Min.

MARKS:50 **PHYSICS MOCK TEST 02 No. MCO:50** If α is the coefficient of performance of a refrigerator and $(a)\frac{I_0}{2}$ (b) I_0 Q_1 is heat released to the hot reservoir, then the heat (c) $\tilde{4}I_0$ (d) $2I_0$ extracted from the cold reservoir ' Q_2 ' is 9. On placing a thin film of mica of thickness 12×10^{-5} cm (a) $\frac{\alpha Q_1}{\alpha - 1}$ (b) $\frac{\alpha - 1}{\alpha} Q_1$ (c) $\frac{\alpha Q_1}{1 + \alpha}$ (d) $\frac{1 + \alpha}{\alpha} Q_1$ 2. In a adiabatic process, relation between ΔU and ΔW is in the path of one of the interfering beams in Young's double slit experiment using monochromticlight, the fringe patternshifts through a distance equal to the width of bright fringe. If $\lambda = 6 \times 10^{-5}$ cm, the refractive index (a) $\Delta U = \Delta W$ (b) $\Delta U = -\Delta W$ of mica is (c) $\Delta U = -\Delta W + \Delta Q$ (d) $\Delta Q = \Delta W$ (a) 1.1 (b) 1.3 3. A gas at N.T.P. is suddenly compressed to one-fourth of its (c) 1.5 (d) 1.4 original volume. If $\gamma = 1.5$, then the final pressure is 10. In a single slit experiment, the width of the slit is doubled. (a) 4 times (b) 1.5 times Which one of the following statements is correct? (c) 8 times (d) $\frac{1}{4}$ times (a) The intensity and angular width of the central maximum are 4. A gas is compressed at a constant pressure of 50 N/m^2 unaffected. from a volume of 10 m³ to a volume of 4 m³. Energy of **100** J is then added to the gas by heating. Its internal energy is (b) The intensity remains same and angular width becomes half. (a) increased by 400 J (b) increased by 200 I (c) The intensity and angular width both are doubled. (c) increased by 100 J (d) decreased by 200I (d) The intensity increases by a factor 4 and the angular width 5. If a star emitting yellow light is accelerated towards earth, decreases by a factor of $\frac{1}{2}$. then to an observer on earth it will appear (a) becoming orange 11. The difference in the effective capacity of two similar capacitors when joined in series and then in parallel is (b) shining yellow 6μ F. The capacity of each capacitor is (a) $2\mu F$ (b) 4µF (c) gradually changing to blue (c) 8µF (d) 16µF 12. A parallel plate air capacitor has capacity C farad, (d) gradually changing to red. potential V volt and energy E joule. When the gap between the plates is completely filled with dielectric 6. A telescope has large diameter of the objective. Then its (a) both V and E increase resolving power is (a) independent of the diameter of the objective (b) Both V and E decrease (b) low (c) V decreases, E increases (c) zero (d) V increases, E decreases (d) high. 13. A parallel plate air filled capacitor of capacitance 'C' has plate area ' *A* ' and the distance between the plates ' *d* '. 7. In Young's double slit experiment, 8th maximum with When a metal sheet of thickness $\left(\frac{d}{2}\right)$ and of the same area ' wavelength ' λ_1 ' is at distance ' d_1 ' from the central A ' is introduced between the plates, its capacitance maximum and 6^{th} maximum with wavelength ' λ_2 ' is at a becomes ' C_2 '. The ratio $C_2: C_1$ is distance ' d_2 . Then $\frac{d_2}{d_1}$ (a) 2: 1 (b) 3:2 (d) 3:1 (c) 4:1 (a) $\frac{3\lambda_1}{4\lambda_2}$ (c) $\frac{4\lambda_1}{3\lambda_2}$ 14. An uncharged capacitor is connected to a battery. While charging the capacitor, how much is the energy lost, from the energy supplied by the battery?

8. If I_0 is the intensity of the principal maximum in the single slit diffraction pattern, then what will be the intensity when the slit width is doubled?


1.

(a) 50%

(c) 100%

(b) 75%

(d) 25%

C

39. If M_0 and L_0 denote the magnetic moment and angular	of two specific heats and ' R ' is universal gas constant
momentum of the electron due to its orbital motion	then ' C_p ' is equal to
respectively, then the gyromagnetic ratio is given by	(a) $\frac{R\gamma}{R}$ (b) γR
(a) $\frac{L_0}{M_0}$ (b) $L_0 M_0$	(a) $\frac{R\gamma}{\gamma-1}$ (b) γR (c) $\frac{\gamma+\gamma}{1-\gamma}$ (d) $\frac{R}{\gamma-2}$
$(c)\frac{M_0}{L_0} \qquad (d)\sqrt{\frac{M_0}{L_0}}$	$1-\gamma$ $\gamma-2$
(c) $\frac{M_0}{L_0}$ (d) $\sqrt{\frac{M_0}{L_0}}$	48. If the absolute temperature of a gas is increased 5 time
40. In the hysteresis curve the value of magnetization (<i>B</i>)	the r.m.s. velocity of the gas molecules will be
which will be present in a substance when value of	(a) 10 times (b) 5 times
magnetizing force (H) is made zero (H = 0) is called as	(c) $\sqrt{5}$ times (d) 25 times
(a) coercivity (b) domain	49. According to kinetic theory of gases, which one of the
(c) retentivity (d) saturation	following statements is wrong?
41. Magnetic flux passing through a coil is initially	(a) All the molecules of a gas are identical.
4×10^{-4} Wb. It reduces to 10% of its original value in t	(a) All the molecules of a gas are identical.
second. If the e.m.f. induced is 0. 72mV then t in second is	
(a) 0.3 (b) 0.4	(b) Collisions between the molecules of a gas and that of the
$\begin{array}{c} (a) \ 0.5 \\ (c) \ 0.5 \\ (d) \ 0.6 \end{array}$	molecules with the walls of the container are perfectly elasti
42. Two coils <i>P</i> and <i>Q</i> are kept near each other.	(c) The molecules do not exert appreciable force on one anoth
When no current flows through coil <i>P</i> and	except during collision.
current increases in coil Q at the rate 10 A/s, the	
e.m.f. in coil <i>P</i> is 15mV. When coil <i>Q</i> carries no	(d) The pressure exerted by a gas is due to the collision betwe
	the molecules of the gas.
<i>P</i> , the magnetic flux linked with the coil <i>Q</i> is	the molecules of the gas.
(a) 1.4mWb(b) 2.2mWb	50. The pressure evented by on ideal gas at a particular
(c) $2.7 \text{mWb}(d) 2.9 \text{mWb}$	50. The pressure exerted by an ideal gas at a particular
43. If flux is given as $\phi = 3t^2 + 4t + 8$. Then find the induced	temperature is directly proportional to
emf at t = 2s	(a) the mean speed of the gas molecules
(a) 16 V (b) 12 V	
$\begin{array}{c} (a) 10 V \\ (c) 8 V \\ (d) 4 V \end{array}$	(b) mean of the square of the speed of the gas molecules
44. The self inductance 'L' of a solenoid of length 'l' and	(c) mean of the square of the speed of the gas moneyas
	(c) the square of the mean speed of the gas molecules
increases as	(c) the square of the mean speed of the gas molecules
	(d) the root mean square speed of the gas molecules.
(a) <i>l</i> decreases and <i>A</i> increases	(d) the root mean square speed of the gas molecules.
(b) both <i>l</i> and <i>A</i> decrease	
(c) both <i>l</i> and <i>A</i> increase	
(d) <i>l</i> increases and <i>A</i> decreases.	
45. The self induction (L) produced by solenoid of length ' l '	
having ' N ' number of turns and cross sectional area ' A '	
is given by the formula (ϕ = magnetic flux, μ_0 =	
permeability of vacuum)	
(a) $L = N\phi$ (b) $L = \mu_0 NAl$	
(c) $L = \frac{\mu_0 N^2 A}{l}$ (d) $L = \frac{\mu_0 N A}{l}$	
46. Assuming the expression for the pressure exerted by the	
gas on the walls of the container, it can be shown that	
pressure is	
(a) $\left[\frac{1}{3}\right]^{rd}$ kinetic energy per unit volume of a gas	
rard	
(b) $\left[\frac{2}{3}\right]^{rd}$ kinetic energy per unit volume of a gas	
[3]	
rath	
(c) $\left[\frac{3}{4}\right]^{1/2}$ kinetic energy per unit volume of a gas	
L4J	
(d) $\frac{3}{2}$ × kinetic energy per unit volume of a gas	
47. If ' C'_p and C_v , are molar specific heats of an ideal gas at	
constant pressure and volume respectively. If ' λ ' is ratio	