Where We Shape The CareerTime :Date :MHITCET MOCK TEST 03No. MCO1. Two particles A and B initially at restmove towards each observed of a traction. The speed of centre of mass at the instant when the speed of A is v and the speed of B is 2v is :(a) $\frac{R}{2ml}$ (b) $\frac{R^2}{al}$ (a) v(b) 2cro (c) 2 v(d) 3 v/2(e) $\frac{r}{m}$ (f) $\frac{r}{m}$ 2. A vessels is filled with an ideal gas at a pressure of the gas is increased to 87°C. The pressure of the gas in the vessel will be(a) $\frac{1}{2}$ m(c) $\frac{r}{al}$ (c) $\frac{r}{al}$ (a) $\frac{1}{5}$ stam(b) 6arm(c) $7 alm$ (d) 8 atm(e) $\frac{1}{2}$ (f) $\frac{1}{2}$ 3. The temperature at which the kinetic energy of oxygen molecules becomes double than its value at 27 °C its (c) 1227 O(f) 327°C(f) 327°C(f) 327°C(g) 927°C(h) 232°C(h) 227°C(h) 227°C(h) 227°C(h) 227°C(g) 11.1(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 2.2.7(g) 11.1(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 11.1(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 2.2.7(h) 11.1(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 2.2.7(h) 3.1.1(h) 2.1.7(h) 2.1.7(h) 2.2.7(h) 1.2.2(h) 3.1.1(h) 2.1.7(h) 2.1.7(h) 2.2.7(h) 2.2.7(h) 2.1.7(h) 2.1.7(h) 2.1.7(h) 2.2.7(h) 2.2.7(h) 2.1.7(h) 2.2.7(h) 2.2.7(h) 2.2.7(h) 2.2.7(h) 2.2.7(h) 2.2.7<		SATISH SCIEN	ICE ACADEMY		
Date :MHTCET MOCK TEST 03No. MCO1. Two particles A and B initially at rest move towards each other under a mutual force of attraction. The speed of the speed of B is 2v is :(a) $\frac{R}{at}$ (b) $\frac{R}{at}$ (a) γ (b) Zero (c) $2v$ (c) $\frac{R}{at}$ (c) $\frac{R}{at}$ (c) $\frac{R}{at}$ (c) $\frac{R}{at}$ (a) γ (b) Zero (c) $2v$ (c) $3v/2$ (c) $\frac{R}{at}$ (c) $\frac{R}{at}$ (d) $\frac{R}{2and}$ 2. A vessels is filled with an ideal gas at a pressure of to amosphere and temperature 27°C. The pressure of the gas in the vessel will be(a) $5 atm$ (b) 6(c) $7 atm$ (d) 8 atm3. The temperature at which the kinetic energy of orgen molecules becomes double than its (a) 2127 (d) $627^{\circ}C$ (e) $1227^{\circ}C$ (f) $327^{\circ}C$ (c) $1:2$ (d) $3:1$ (e) 21.7 (f) $427^{\circ}C$ (f) $327^{\circ}C$ (g) $227^{\circ}C$ (h) $527^{\circ}C$ (c) $1:2$ (d) $3:1$ (f) $4acm$ 5. A ball of rudius 11 cm and mass 8 kg rolls from rest down a rump of length $2m$. The ramps is inclined at 35° to te horzonati. When the biltreactes the botom, fis velocity is to $35^{\circ} = 0.57$ (h) $5m^{\circ}s$ (i) $2127^{\circ}C$ (h) $5m^{\circ}s$ (i) $6m^{\circ}s$ (i) $(m_{x}^{\circ}, <(E_{x})_{x})$ 6. A thiu uniform strendar ring is rolling down an inclined in $210^{\circ}R/2$ (h) $5m^{\circ}s$ (i) $(E_{x}^{\circ}, <(E_{x})_{x})$ 7. In Young's experiment, light of wavelength 4000 Å is used (male $212^{\circ}R/2$ (h) $5m^{\circ}s$ (i) $(E_{x})_{x} < (E_{x})_{x}$ 7. In Young's experiment, light of wavelength 4000 Å is used induce $12^{\circ}R/2$ (h) $4^{\circ}R/2$ <		Where We Shap	be The Career Time :		
 1. Two particles A and B initially atrest move towards each other under a mutual force of attraction. The speed of A is v and the speed of B is 2 v is: (a) v (b) Zero (c) 2 v (d) 3 v /2 2. A vessels is filled with an ideal gas at a pressure of 10 annopheres and temperature 27°C. Half of the mass of the gais in the vessel will be (a) 5 atm (b) 6 arm (b) 6 arm (c) 7 atm (d) 8 atm 3. The temperature at which the kinetic energy of oxygen molecules becomes double than its value at 7° C is (2 2 7° C) (d) 627°C (a) (d) 627°C (c) (2 2 7° C) (d) 627°C (c) (2 2 3° C) (d) 627°C (c) (2 3 3° 1 (c) 1 1 (c) 1 2 7 (c) 1 1 2 (d) 3 3 1 (c) 1 1 (c) 1 2 7 (c) 1 1 2 (d) 3 3 1 (c) 1 1 (c) 1 2 7 (c) (c) 1 2 2 (d) 3 3 1 (c) 1 1 (c) 1 2 7 (c) (c) 1 2 2 (d) 3 3 1 (c) 1 1 (c) 1 2 7 (c) 1 1 2 (d) 3 2 (c) 8 /4 (d) 2 8 /3 (c) 8 /4 (Date : MHTCET MO	DCK TEST 03 No. MCQ		
(a) v (b) $Zero$ (c) $2v$ (d) $3v/2$ 2. A vessels if lide with an ideal gas at a pressure of 10 atmospheres and temperature 27°C. Half of the mass of the gas is removed from the vessel and temperature of the remaining gas is increased to 87°-C. The pressure of the gas in the vessel will be (a) 5 atm (b) 6 arm (c) 7 atm (d) 8 atm 3. The temperature at which the kinetic energy of varge at 27° C is (a) 127° C (b) 327° C (c) 1:2 C (c) d) 637° C 4. Ratio of kinetic energy and rotational energy in the motion a disc is i (CMT 1996) (a) 1:1 (b) 2:7 (c) 1:2 (d) 3:1 5. A ball of radius 11 cm and mass 8 kg rolls from yes down a map of length 2m. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (st) 35° = 0.57) (a) 22 mis (b) 5 mis (c) 4 mis (d) 6 mis 4. A thin uniform circular tring is rolling down an map of length 2m. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (st) 35° = 0.57) (a) 2 mis (b) 5 mis (c) 4 mis (c) 8 mis (c) 5 mis (c) 4 mis (d) 6 mis 4. A thin uniform circular tring is rolling down an map of length 2m. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (st) 35° = 0.57) (a) 2 mis (b) 5 mis (b) 5 mis (c) 4 mis (c) 8 mis (c) 4 mis (c) 8 mis (c) 4 mis (c) 8 mis (c) 4 mis (c) 9 mis (c) 12 mis 5. A ball of radius 11 cm and mass 8 kg rolls from yes down a ramp of length 2m. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (st) 35° = 0.57) (c) 4 mis (c) 8 mis (c) 4 mis (d) 6 mis 5. A ball of radius 11 cm and mass 8 kg rolls from yes down a ramp of length 2m. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (st) 35° = 0.57) (c) 4 mis (c) 8 mis (c) 0 4 mis (d) 6 mis 5. A ball of radius 11 cm and mass 8 kg rolls from yes down a ramp of length 2m. The ramp is inclined at 35° to the produce bright fringes of with 0.0 fo mm, at a dis	1.	Two particles A and B initially at rest move towards each other under a mutual force of attraction. The speed of centre of mass at the instant when the speed of A is v and the speed of B is 2v is :	(a) $\frac{IR}{2\pi al}$ (b) $\frac{IR^2}{al}$ (c) $\frac{I^2R}{al}$ (d) $\frac{I^2R}{2\pi al}$		
(c) $2v$ (d) $3v/2$ 2. A vessels is filled with an ideal gast a pressure of 10 <i>dimospheres</i> and temperature 27°C. Hif of the mass of the gas is removed from the vessel and temperature of the remaining gas is increased to 87°C. The pressure of the gas in the vessel (a) $5 \ dim$ (b) 6 <i>ann</i> (c) $7 \ ann$ (d) $8 \ ann$ 3. The temperature at which the kinetic energy of oxygen molecules becomes double than its value at 27 °C is (a) 227° (b) 327° C (c) 1227° (c) 3237° C (c) 1227° (c) 3237° C (c) 1227° (d) 327° C (e) 122° (d) 33° :1 5. A ball of radius 11 <i>cm</i> and mass 8 <i>kg</i> rolls from rest down a ramp of keight $2m$. The ramp is inclined at 35° to the borozonal. When the ball reaches the bottom, fix velocity is (si $35^{\circ} = 0.57$) (a) $2 \ m's$ (b) $5 \ m's$ (c) $4 \ m's$ (d) $6 \ m's$ 6. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its lineer acceleration along the inclined plane will be (a) $92 \ m's$ (b) $8/3 \ m's$ (c) $4 \ m's$ (d) $6 \ m's$ at a distance 72 meters. If the whole appanetus is dipped in a liquid of refrectiontic (a) $12 \ mm$ (b) $0.3 \ mm$ (c) $0.4 \ mm$ (d) $1.2 \ mm$ 8. A long straight wire of resistance <i>R</i> , malus <i>a</i> and lenght <i>I</i> (c) $0.4 \ mm$ (d) $1.2 \ mm$ 8. A long straight wire of resistance <i>R</i> , malus <i>a</i> and lenght <i>I</i> (c) $0.4 \ mm$ (d) $1.2 \ mm$ (c) $0.3 \ mm$ (d) $1.2 \ mm$ (c) $0.3 \ mm$ (d) $1.2 \ mm$ (c) $0.3 \ mm$ (d) $1.2 \ mm$ (c) $0.4 \ mm$ (d) $1.2 \ mm$ (c) $0.3 \ mm$ (d) $1.2 \ mm$ (c) $0.4 \ mm$ (d) $1.2 \ mm$ (c) $0.3 $	(a)	v (b) Zero			
2. A vessels is filled with an ideal gas at a pressure of 10 atmosphere and temperature 27°. CH if of the mass of the gas in the vessel will be (a) 5 atm (b) 6 atm (c) 7 atm (d) 8 atm 3. The temperature at which the kinetic energy of explored at 27° C is (a) 1.8 cm (b) 1.5 cm (c) 7 atm (d) 8 atm 3. The temperature at which the kinetic energy of explored at 27° C is (a) 1.8 cm (b) 1.5 cm (c) 2.1 cm (d) 2.4 cm 11. A rod of length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax of a concave mirror of focal length 10 cm lies along the principal ax (c) $(x_1 \sim (x_2 \sim (x_2 \sim (0) (x_1 \wedge (x_2 \wedge x_2 \wedge x_3 \wedge (x_2 \wedge x_3 \wedge (x_2 \wedge x_$	(c) 2	2 v (d) 3 v /2	9. The frequency order for γ -rays (B), X -rays		
 (a) 5 atm (b) 6 atm (c) 7 atm (d) 8 atm (e) 7 atm (f) 8 atm (f) 7 atm (g) 2 a transparature at which the kinetic energy of oxygen molecules becomes double than its value at 27 °C is value at 27 °C is (2 2 3 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 3 C 0) (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 2 C 0) (2 3 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 7 °C (2 1 2 3 C 0) (2 1 2 2 1 °C (2 1 2 3 C 0) (2 1 °C (2 1 2 3 °C (2 1 2 1 2 °C (2 1 2 3 °C (2 1 2 2 1 °C (2 1 2 2 1 °C (2 1 1 °C (2	2.	A vessels is filled with an ideal gas at a pressure of 10 <i>atmospheres</i> and temperature $27^{\circ}C$. Half of the mass of the gas is removed from the vessel and temperature of the remaining gas is increased to $87^{\circ}C$. The pressure of the gas in the vessel will be	$(A), UV \text{ rays(c) is}$ $(a) B > A > C \qquad (b) A > B > C$ $(c) C > B > A \qquad (d) A > C > B.$		
3. The temperature at which the kinetic energy of cxygen molecules becomes double than its value at 27 °C is (a) $927^{\circ}C$ (b) $327^{\circ}C$ (c) $1227 O$ (d) $627^{\circ}C$ be (a) $1.8 cm$ (b) $1.5 cm$ (c) $2.1 cm$ (d) $2.4 cm$ 3. The temperature at which the kinetic energy of a disc is (c) $1227 O$ (d) $627^{\circ}C$ (e) $2.1 cm$ (d) $2.4 cm$ 4. Ratio of kinetic energy and rotational energy in the motion a disc is (c) $112 O$ (d) $627^{\circ}C$ (f) $327^{\circ}C$ (c) $112 C$ (d) $33 \cdot 1$ 5. A ball of radius 11 cm and mass 8 kg rolls from rest down a ramp of length $2m$. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (sin $35^{\circ} = 0.57$) (a) $2 m/s$ (d) $6 m/s$ 12. Carbon, silicon and Germanium atoms have four valer electrons each. Their valence and conduction band a separated by energy band gaps represented by (E_{cb}, C_{cb}, E_{ab} (c) $4 m/s$ (d) $6 m/s$ 6. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be (a) $g/2$ (b) $g/3$ (c) $g/4$ (d) $2g/3$ 7. In Young's experiment, light of wa velength 4000 Å is used to produce bright fringes of width 0.6 mm, at a distance of 2 meters. If the whole apparatus is dipped in a liquid of refractive index 1.5, then fringe width will be (a) $0.2 mm$ (b) $0.3 mm$ (c) $0.4 mm$ (d) $1.2 mm$ 8. A long straight wire of resistance R , radius a and lengh l carries a constant current l . The Poynting vector for the wire will be9. Devery element has only two stable isotopes (c) Only one isotope of each element is stable		(a) 5 atm (b) 6 atm (c) 7 atm (d) 8 atm	10. The length of the compound microscope is 14 <i>cm</i> . The magnifying power for relaxed eye is 25. If the focal length of eye lens is 5 <i>cm</i> , then the object distance for objective lens will		
 (c) 1227 O (d) 627°C 4. Ratio of kinetic energy and rotational energy in the motion a disc is [CPMT 1996] (a) 1:1 (b) 2:7 (c) 1:2 (d) 3:1 5. A ball of radius 11 <i>cm</i> and mass 8 <i>kg</i> rolls from rest down a ramp of length 2<i>m</i>. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (sin 35° = 0.57) (a) 2 <i>m/s</i> (b) 5 <i>m/s</i> (c) 4 <i>m/s</i> (d) 6 <i>m/s</i> 6. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be (a) g/2 (b) g/3 (c) g/4 (d) 2g/3 7. In Young's experiment, light of wavelength 4000 Å is used to produce bright fringes of width 0.6 <i>mm</i>, at a distance of 2 meters. If the whole apparatus is dipped in a liquid of refractive index 1.5, then fringe width will be (a) 0.2 <i>mm</i> (b) 0.3 <i>mm</i> (c) 0.4 <i>mm</i> (d) 1.2 <i>mm</i> 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> 9. Devrey element has only two stable isotopes (c) Only one isotope of each element is stable 	3. (a)	The temperature at which the kinetic energy of oxygen molecules becomes double than its value at 27 °C is 927°C (b) 327°C	be (a) 1.8 cm (b) 1.5 cm (c) 2.1 cm (d) 2.4 cm 11 A red of length 10 cm lies along the principal axis		
 4. Ratio of kinetic energy and rotational energy in the motion of a disc is [CPWT 1996] (a) 1:1 (b) 2:7 (c) 1:2 (d) 3:1 (e) 1:2 (f) 1:2 (f) 2:7 (g) 1:2 (g) 1:1 (h) 2:7 (h) 2:5 (h) 15 cm (c) 2.5 cm (h) 5 cm. 12. Carbon, silicon and Germanium atoms have four valer electrons each. Their valence and conduction band a separated by energy band gaps represented by (E _k) _k . (E _k) _s a (B) (E _k) _k . (E _k) _s a (B) (E _k) _k . (E _k) _s a (B) (E _k) _k . (E _k) _s a (C) (E _k) _k a (D) (E _k) _k . (E _k) _s a (C) (E _k) _k a (D) (E _k) _k . (E _k) _s a (C) (E _k) _k a (D) (E _k) _k . (E _k) _s a (C) (E _k) _k a (D) (E _k) _k . (E _k) _k a (D) (E _k) _k a (D) (E _k) _k . (E _k) _k a (D) (E _k) _k a (D	(c)	1227 O (d) 627°C	of a concave mirror of focal length 10 cm in such a		
 (a) 1:1 (b) 2:7 (c) 1:2 (d) 3:1 (a) 10 cm (b) 15 cm (c) 1:2 (d) 3:1 (c) 1:2 (d) 3:1 (c) 1:2 (d) 3:1 (c) 1:2 (d) 3:1 (c) 2.5 cm (d) 5 cm. (c) 4 m/s (d) 6 m/s (c) 4 m/s (d) 6 m/s (c) 4 m/s (d) 1.2 mm (d) 6 m/s (c) 8/4 (d) 28/3 (e) 9/3 (c) 8/4 (d) 28/3 (f) 10 cm (b) 0.3 mm (c) 0.3 mm (d) 1.2 mm (g) 0.2 mm (d) 1.2 mm (h) 12 mm (h) A long straight wire of resistance <i>R</i>, radius <i>a</i> and lengh <i>I</i> carries a constant current <i>I</i>. The Poynting vector for the wir will be (c) 0.4 mm (d) 1.2 mm (c) 0.4 mm (d) 1.2 mm (c) 0.4 mm (d) 1.2 mm 	4.	Ratio of kinetic energy and rotational energy in the motion of a disc is [CPMT 1996]	way that its end closer to the pole is 20 cm away from the mirror. The length of the image is		
 (c) 1:2 (d) 3:1 (c) 2.5 cm (d) 5 cm. (e) 2.5 cm (e) 2.5 cm (f) 5 cm. (f) 5 cm. (g) 2 m/s (g) 2 m/s (g) 4 m/s (h) 5 m/s (g) 4 m/s (h) 6 m/s (c) 4 m/s (c) 4 m/s (d) 6 m/s (e) 4 m/s (f) 6 m/s (f) 6 m/s (g) g/2 (b) g/3 (c) g/4 (d) 2g/3 (h) 0.5 mm (g) 0.2 mm (h) 0.3 mm (g) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.2 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.3 mm (h) 0.2 mm (h) 0.2 mm (h) 0.3 mm (h) 1.2 mm		(a) 1:1 (b) 2:7	(a) 10 cm (b) 15 cm		
 5. A ball of radius 11 <i>cm</i> and mass 8 <i>kg</i> rolls from rest down a ramp of length 2<i>m</i>. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (sin 35° = 0.57) (a) 2 <i>m/s</i> (b) 5 <i>m/s</i> (c) 4 <i>m/s</i> (d) 6 <i>m/s</i> 6. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be (a) g/2 (b) g/3 (c) g/4 (d) 2g/3 7. In Young's experiment, light of wa velength 4000 Å is used to produce bright fringes of width 0.6 <i>mm</i>, at a distance of 2 meters. If the whole apparatus is dipped in a liquid of refractive index 1.5, then fringe width will be (a) 0.2 <i>mm</i> (b) 0.3 <i>mm</i> (c) 0.4 <i>mm</i> (d) 1.2 <i>mm</i> 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> carries a constant current <i>I</i>. The Poynting vector for the will be (c) 0.4 <i>mm</i> (d) 1.2 <i>mm</i> 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> carries a constant current <i>I</i>. The Poynting vector for the wie will be		(c) 1:2 (d) 3:1	(c) 2.5 cm (d) 5 cm.		
 6. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be (a) g/2 (b) g/3 (c) g/4 (d) 2g/3 7. In Young's experiment, light of wavelength 4000 Å is used to produce bright fringes of width 0.6 mm, at a distance of 2 meters. If the whole apparatus is dipped in a liquid of refractive index 1.5, then fringe width will be (a) 0.2 mm (b) 0.3 mm (c) 0.4 mm (d) 1.2 mm 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> carries a constant current <i>I</i>. The Poynting vector for the wire will be (c) Only one isotope of each element is stable 	5.	A ball of radius 11 cm and mass 8 kg rolls from rest down a ramp of length 2m. The ramp is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is (sin $35^{\circ} = 0.57$) (a) 2 m/s (b) 5 m/s (c) 4 m/s (d) 6 m/s	 12. Carbon, silicon and Germanium atoms have four valence electrons each. Their valence and conduction band are separated by energy band gaps represented by (E_g)_C. (E_g)_{Si} and (E_g)_{Ge} respectively. Which one of the following relationship is true in their case (a) (E_g)_C > (E_g)_{Si} (b) (E_g)_C = (E_g)_{Si} (c) (E_g)_C < (E_g)_{Ge} (d) (E_g)_C < (E_g)_{Si} 		
 (a) Induiting and solution respectively (b) boron and arsenic respectively (c) arsenic and boron respectively (d) sodium and magnesium respectively. (d) sodium and magnesium respectively. (e) solution respectively (f) arsenic and boron respectively (g) sodium and magnesium respectively. (h) boron and arsenic respectively (c) arsenic and boron respectively. (d) sodium and magnesium respectively. (e) niching width will be (f) arsenic and boron respectively (g) sodium and magnesium respectively. (h) boron and arsenic respectively (h) boron respectively (h) sodium and magnesium respectively. (h) sodium and magnesium respectively. (h) boron and arsenic respectively (h) sodium and magnesium respectively. (h) sodiu	6.	A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be (a) $g/2$ (b) $g/3$ (c) $g/4$ (d) $2g/3$	 13. An <i>n</i>-type and a <i>p</i>-type silicon semiconductor can be obtained by doping pure silicon with (a) indium and sodium respectively. 		
 7. In Young's experiment, light of wavelength 4000 Å is used to produce bright fringes of width 0.6 mm, at a distance of 2 meters. If the whole apparatus is dipped in a liquid of refractive index 1.5, then fringe width will be (a) 0.2 mm (b) 0.3 mm (c) 0.4 mm (d) 1.2 mm 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> carries a constant current <i>I</i>. The Poynting vector for the wire will be (b) boron and arsenic respectively (c) arsenic and boron respectively. (d) sodium and magnesium respectively. 14. Mark the correct statement (a) Nuclei of different elements can have the same number of neutrons (b) Every element has only two stable isotopes (c) Only one isotope of each element is stable 			(a) manufi and social respectively		
 meters. If the whole a pparatus is dipped in a liquid of refractive index 1.5, then fringe width will be (a) 0.2 mm (b) 0.3 mm (c) 0.4 mm (d) 1.2 mm 8. A long straight wire of resistance <i>R</i>, radius <i>a</i> and length <i>l</i> carries a constant current <i>I</i>. The Poynting vector for the wire will be (b) Every element has only two stable isotopes (c) Only one isotope of each element is stable 	7.	In Young's experiment, light of wavelength 4000 Å is used to produce bright fringes of width 0.6 mm , at a distance of 2	(b) boron and arsenic respectively		
 (a) 0.2 mm (b) 0.3 mm (c) 0.4 mm (d) 1.2 mm (e) 1.2 mm (f) 1.2 mm (f) 1.2 mm (g) 1.2 mm (h) 1.2 mm <		meters. If the whole a pparatus is dipped in a liquid of refractive index 1.5, then fringe width will be	(d) sodium and magnesium respectively.		
 (c) 0.4 mm (d) 1.2 mm (e) 1.2 mm (f) 1.2 mm (a) Nuclei of different elements can have the same numb of neutrons (b) Every element has only two stable isotopes (c) Only one isotope of each element is stable 		(a) $0.2 mm$ (b) $0.3 mm$	14 Mark the correct statement		
(b) Every element has only two stable isotopes will be (c) Only one isotope of each element is stable	8	(c) $0.4 mm$ (d) $1.2 mm$	(a) Nuclei of different elements can have the same number of neutrons		
•	σ.	carries a constant current I . The Poynting vector for the wire will be	(b) Every element has only two stable isotopes(c) Only one isotope of each element is stable		

	(d) All isotopes of every element are radioactive		(a) 7 (c) 35	(b) (d)	70 140	
15	The		(0) 00	(0)		
15.	The energy release	In the fission of 1 kg of $_{92}U^{-55}$ is	24 Magnetic e	ffect of current	t was discovered by	
	(Energy per mission – 200 MeV) (a) $5.1 \times 10^{26} \text{eV}$ (b) $5.1 \times 10^{26} \text{I}$					
	(a) $5.1 \times 10^{23} \text{eV}$	(b) 5.1×10^{20} J	(a) Fara	day	(b) Oersted	
	(c) 8.2×10^{10} J	(d) $8.2 \times 10^{13} \text{ MeV}$	(c) Amp	ere	(d) Bohr	
16.	When the momentum	n of a proton is changed by an amount P_{0} ,				
	the corresponding c	hange in the de-Broglie wavelength is	25. The result	ant magnetic i	noment of neon at	tom will be
	found to be 0.25%. T	hen, the original momentum of the proton		:		
	was	, F F	(a) Infin	ny	(b) μ_B	
	(0) n	(b) 100m	(c) Zero		(d) $\mu_{B}/2$	
	(a) p_0	(b) $100 p_0$				
17.	(c) $400 p_0$ X – rays and γ -	(d) $4 p_0$ - rays of the same energies may be	26. Two to re 200 and 2 and 20 cr	bads 1 and 2 100 respective n respective	2 have total num vely with averag ly. If they carry	ber of turns e radii 40 cm same current
	distinguished by		i, the rad	lio of the ma	agnetic fields alo	ong the two
	(a) Their velocity	(b) Their ionising power	loops is			~
	(a) The intervent	(1) Method of an electric r	(a)1.1	(b)4.1		
	(c) Their intensity	(a) Method of production				
			(c) 2:1	(d)1:2		
18.	The coil of a.c. gen	erator has 100 turns, each of cross.			X.	
	sectional area 2 m	² . It is rotating at constant angular	27 The resista	nce of 1 A am	meter is 0.018 O T	o convert it into
	speed 30rad/s in a	uniform magnetic field of 2×10^{-2} T.	10 4	aton the -1	t magista = 22'	d will be
	If the total resistan	ce of the circuit is 6000 then	10 A amm	eter, the shun	t resistance require	a will be
	ii the total resistan	issingted in the singuitis	(a) 0.18	Ω	(b) 0.0018 Ω	
	maximum power o		(c) 0.007	20	(d) 0.12.Q	
	(a) 6 W	(b) 9 W	(0) 0.002		(u) 0.1232	
	(c) 12 W	(d) 24 W				
19.	For a transformer,	the turns ratio is 3 and its efficiency is	28. Given be	low are two	statements : One	e is labelled as
	0.75. The current flowing in the primary coil is 2 A and		Assertion	h A and the o	other is labelled	as Reason R.
	the voltage applied	age applied to it is 100 V. Then the voltage and the		on A : Fo	or measuring t	the potential
	current flowing in	the secondary coil are respectively.	differer	nce across a	a resistance of	600 Ω , the
	(a) 150 V, 1.5 A	(b) 300 V, 0.5 A	voltme	ter with re	esistance 1000	Ω will be
	(c) 300 V, 1.5 A	(d) 150 V, 0.5 A	preferr	ed over voltr	neter with resist	ance 4000 Ω .
20	If a current of 3.0	amperes flowing in the primary coil is	Reason	R : Voltme	ter with higher r	esistance will
20.	If a current of 3.0 amperes flowing in the primary coll is		draw s	maller curr	ent than voltme	ter with lower
	reduced to zero il o.	001 second, then the induced e.m.r. If the	resista	nce.		
	secondary collis 150	000 voits. The mutual inductance between	In the	light of the a	above statement	ts, choose the
	the two coils is		most a	ppropriate a	inswer from the	options given
	(a) 0.5 henry	(b) 5 henry	below.			
	(c) 1.5 henry	(d) 10 henry	(a) A is	not correct	but R is correc	t
			(b) Bot	h A and R a	re correct and R	is the correct
21	The number of the	in the soil of an assessments in 5000	explan	ation of A		D • • • •
41 .	The number of turns	in the contor an ac generator is 5000 and	(c) Bot	n A and R	are correct but	к is not the
	the area of the coil is $0.25 m^2$. The coil is rotated at the rate of		correct	explanation	n of A	
	100 cycles/sec in a magnetic field of $0.2 W / m^2$. The peak value		(a) A 18	correct but	K is not correc	L
	of the emf generate	d is nearly				
	(a) 786 hV	(b) 440 kV	29.			
	(a) / 80 kV	(b) $440 kV$		D		
	(c) $220 kV$	(d) 157.1 <i>kV</i>	-	NNR5	230	
22.	• A line passing through places having zero value of magnetic dip is called		Í.	ZR ₈ 5 ³ Ω	12	
	(a) Isoclinic line	(b) Agonic line	8V \ 2	1 / Rs.		
	(c) Isogonic line	(d) Aclinic line	/		Ω R ₂ §4Ω	
23.	A coil is placed per	The current	t flowing th	rough R ₂ is :		
	5000 f. when the	ileia is changed to 3000 T in 2 s, an	. 2	1.	-	
	induced emf of 22	(a) $\frac{1}{3}$ A (b)	$-\frac{1}{2}$ A			
diameter of the coil is 0.02 m then the number of turns			5	<u></u>		

in the coil is :

(c) 975

- 40. One mole of O_2 gas having a volume equal to 22.4 *litres* at $0^{\circ}C$ and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 *litres*. The work done in this process is
 (a) 1672.5 J
 (b) 1728 J
 - (a) 1672.5 J
 (b) 1728 J
 (c) -1728 J
 (d) -1572.5 J
- **41.** Two thermometers are used to record the temperature of a room. If the bulb of one is wrapped in wet hanky
 - (a) The temperature recorded by both will be same
 - (b) The temperature recorded by wet-bulb thermometer will be greater than that recorded by the other
 - (c) The temperature recorded by dry-bulb thermometer will be greater than that recorded by the other
 - (d) None of the above
- 42. The volume of a metal sphere increases by 0.24% when its temperature is raised by $40^{\circ}C$. The coefficient of linear expansion of the metal is $^{\circ}C$

(a) 2×10^{-5} (b) 6×10^{-5} (c) 2.1×10^{-5} (d) 1.2×10^{-5}

43. An object of mass *m* is suspended at the end of a massless wire of length *L* and area of cross-section, A. Young modulus of the material of the wire is *Y*. If the mass is pulled down slightly its frequency of oscillation along the vertical direction is

(a)
$$f = \frac{1}{2\pi} \sqrt{\frac{mL}{YA}}$$
 (b) $f = \frac{1}{2\pi} \sqrt{\frac{Y}{m}}$
(c) $f = \frac{1}{2\pi} \sqrt{\frac{YL}{mA}}$ (d) $f = \frac{1}{2\pi} \sqrt{\frac{m}{Y}}$

44. Iceberg floats in water with part of it submerged. What is the fraction of the volume of iceberg submerged if the density of ice is ρ_i = 0.917 g cm⁻³?
(a) 0.458 (b) 0
(c) 0.917 (d) 1

45. A soap bubble assumes a spherical surface. Which of the following statement is wrong

(a) The soap film consists of two surface layers of molecules back to back

(b) The bubble encloses air inside it

(c) The pressure of air inside the bubble is less than the atmospheric pressure; that is why the atmospheric pressure has compressed it equally from all sides to give it a spherical shape

(d) Because of the elastic property of the film, it will tend to shrink to as small a surface area as possible for the volume it has enclosed

46. A spherical planet far out in space has a mass M_0 and diameter D_0 . A particle of mass *m* falling freely near the surface of this

planet will experience an acceleration due to gravity which is equal to

- (a) GM_0/D_0^2 (b) $4mGM_0/D_0^2$ (c) $4GM_0/D_0^2$ (d) GmM_0/D_0^2
- 47. If the total energy transferred to a surface in time t is 6.48×10⁵ J, then the magnitude of the total momentum delivered to this surface for complete absorption will be :
 (a) 2.46×10⁻³ kg m/s
 (b) 2.16×10⁻³ kg m/s

(c) 1.58×10^{-3} kg m/s

- (d) 4.32×10^{-3} kg m/s
- **48.** A particle of mass *m* is moving in a straight line with line with momentum p. Starting at time t = 0, a force F = kt acts in the same direction on the moving particle during time interval *T* so that its momentum changes from *p*to 3*p*. Here *k* is a constant. The value of *T* is :

49. A body of mass m is suspended from a string of length l. What is minimum horizontal velocity that should be given to the body in its lowest position so that it may complete one full revolution in the vertical plane with the point of suspension as the centre of the circle

(a)
$$v = \sqrt{2 \lg}$$
 (b) $v = \sqrt{3 \lg}$
(c) $v = \sqrt{4 \lg}$ (d) $v = \sqrt{5 \lg}$

- 50. The maximum range of a gun on horizontal plane is 16 km. If $g = 10 \text{ m s}^{-2}$, then muzzle velocity of a shell is (a) 160 m s⁻¹
 (b) $200\sqrt{2} \text{ m s}^{-1}$ (c) 400 m s⁻¹
 (d) 800 m s⁻¹
- **51.** The number of significant figures in 6.02×10^{23} is

(a)	23	(b)	3
(c)	4	(d)	26

52.What is the mass ratio of ethylene glycol ($C_2H_6O_2$, molar mass = 62 g/mol) required for making 500 g of 0.25 molal aqueous solution and 250 mL of 0.25 molar aqueous solution ?

(a)1 : 1	(b)3: 1
(c) 2 : 1	(d) 1 : 2

53. The density of neutrons is of the order

(a)	$10^3 kg/cc$	(b)	$10^{6} kg/cc$
(c)	$10^9 kg/cc$	(d)	$10^{11} kg/cc$

54. Which electronic level would allow the hydrogen atom to absorb a photon but not to emit a photon

(a)	3s	(b)	2p
(c)	2 <i>s</i>	(d)	1 <i>s</i>

55.	Which type of bonding ex	kists in Li_2O and CaF_2 respectively	(a) 10litre (b) 4litre
			(c) 2litre (d) 5litre
	(a) Ionic, ionic	(b) Ionic, covalent	
	(c) Covalent, ionic	(d) Coordinate, ionic	63. Given the reaction between 2 gases
	~		represented by A and B to give the
56.	Covalent molecules are u	isually held in a crystal structure by	Tepresented by A_2 and B_2 to give the
	(a) Dinala dinala attua	ation	compound $AB_{(g)}$.
	(a) Dipole-dipole attra	ction	
		:0011	$A_{2(g)} + B_{2(g)} \neq 2AB_{(g)}$
	(c) Hydrogen bonds (d) Van dan Waal's atte		
	(d) vander waars attr	action	At equilibrium, the concentration of
57	If 1 Mand 2 E litra NaOH an	lution is mixed with another 0 5 M and	$A_2 = 3.0 \times 10^{-3} M$, of $B_2 = 4.2 \times 10^{-3} M$, of
57.	3 <i>litre NaOH</i> solution, then	molarity of the resultant solution with	$1 + 2.8 \times 10^{-3} M$
	be	AD	If the reaction takes place in a scaled vessel at
	(a) 1.0 <i>M</i>	(b) 0.73 <i>M</i>	If the reaction takes place in a sealed vessel at
	(c) $0.80 M$	(d) 0.50 <i>M</i> 527	C^{o} , then the value of K_{c} will be
-0			(a) 2.0 (b) 1.9
58.	11 3 gm of glucose (mol. wt. 15° C. Then the osmotic pr	100J IS dissolved in 60 gm of water at ressure of this solution will be	(c) 0.62 (d) 4.5
	(a) 0.34 atm	(b) 0.65 atm	$(c) 0.02$ $(u) \pm 0.02$
	(c) 6.57 atm	(d) 5.57 atm	64. The titue tion of much acid as strong here
			with phenolphthalein as indicator is shown
59.	A 0.2 molal aqueous solution	on of a weak acid (HX) is 20% ionised.	below. The $K_{phenolphthaien} = 4 \times 10^{-10}$
	The freezing point of this s	olution is (Given $K_f = 1.86^{\circ} C/m$ for	Given: log 2 = 0. 3
	water)	5	
	(a) $-0.31^{\circ}C$	(b) $-0.45^{\circ}C$	12
	(c) $-0.53^{\circ}C$	(d) $-0.90^{\circ}C$	10 -
			置 8 -
60.	An element (atomic	mass = 100g / mol having	6
	has structure has unit call adge 400 nm The		
		The cell cuge 400 pm. The	$V_{\text{res}} \rightarrow V_{\text{res}}$
	density of element i	S	The number of following statement/s which is/ar
(-)	$7.000 \text{ s} / \text{sm}^3$	$(1) 2 144 \text{ sum}^3$	correct about phenolphthalein is
(a)	7.289 g/cm	(b) 2.144 ycm	(a) It can be used as an indicator for the titration
(c)	10.376 g/cm^3	(c) 5.188 <i>ycm</i> ³ (1996)	(b) It begins to change colour at $pH = 8.4$
. ,			(c) It is a weak organic base
61.	Select a ferromagnetic	material from the following.	(d) It is colourless in acidic medium
(a)]	Dioxygen (h) Chromin	um (IV) ovide	65. An endothermic reaction is one in which
(a)	Dioxygen (0) enfolint	III(IV) OXICE	(a) Heat is converted into electricity (b) Uset is absorbed
(c) l	Benzene (d) Dihydro	gen monoxide	(b) Heat is absolved
			(c) Heat is converted into machanical work
62.	A 20litre container	at 400 K contains $CO_{2(a)}$ at	(d) Heat is converted into mechanical work
	processing 0.4 atm an	d an average of SrO (naglast	66 A reaction that takes place with the absorption of energy
	the sector of a solution of the sector of the		(a) Burning of a candle (b) Rusting of iron
	container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when		(a) Electrolysis of water (d) Direction of food
			(c) Electrolysis of water (d) Electrol of rood
			67. If enthalpies of methane and ethane are respectively 320 at
			360 calories then the bond energy of $C - C$ bond is
	pressure of CO_2 atta	ains its maximum value,	(a) 80 calories (b) 40 calories
	will be (Given that.	$SrCO_{a} \subset SrO_{a} + CO_{a}$	(c) 60 calories (d) 120 calories
		$3(s) \neq 2(g),$	
	$K_p = 1.6atm$)		68. A First order reaction is half completed in 45 minutes. Ho
			long does it need 99.9% of the reaction to be completed

(a) 5 hours	(b) 7.5 hours	(c) Interstitial compounds a	re always stoichiometric in nature	
(c) 10 hours	(d) 20 hours	(d) Small elements like H, compounds.	B, C and N can form interstitial	
60 Consider the reaction	$a 2N O (a) \rightarrow 4NO (a) + O (a)$	77. What is the EAN of nicke	lin Ni(CO) ₄	
09. Consider the reaction	$12N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$	(a) 34	(b) 35	
The rate law fo Which of the fo	r this is Rate = $K[N_2O_5]$. llowing statements is true regarding the	(c) 32	(d) 36	
above reaction (a) Its order is 1 and m	? olecularity 1	78. The ligands which can get attached to the central metal is through more than one atom are called		
(b) Its order is 1 and m	olecularity 2	(a) Ambident ligands	(b) Polydentate ligands	
(c) Its order is 2 and m	olecularity 2	(c) Chelate ligands	(d) Neutral ligands	
(d) Its order is 2 and m	olecularity 1			
		79. The coordination num	ber and oxidation state of Ci	
70. For an elementar	y reaction, the variation of rate	in $K_3Cr(C_2O_4)_3$ are re-	spectively	
$= \frac{1}{2} $	$-5.4 - \frac{100}{2}$ where T is temperature	(a) 3 and $+3$		
$\frac{1}{10000000000000000000000000000000000$	-5.4 $\frac{-7}{T}$, where T is temperature and k is in terms of sec ⁻¹ Identify the	(b) 3 and 0		
incorrect option.	in a 15 in arms of see . Identify the	(c) 6 and $+3$		
(a) There is no finit	e temperature at which rate constant can	(c) $\vec{0}$ and $\vec{+}3$		
be $4 \times 10^{6} \text{sec}^{-1}$.		(d) 4 and $+2$ (1995)		
(b) Fraction of act	ivated molecules will be $e^{-100/1}$ at any		Y	
(c) Activation ener	rey for the reaction will be approx	80. CH_3 $CH_2 - Cl$		
460.6cal.	by for the fourtion will be uppion			
(d) Rate of reaction	will vary linearly with concentration of			
reactant.		The above reaction proceeds through		
71. When 1 coulomb o	of charge is passed through electrolyte	(a) Nucleophilic substitu	ition	
solution, then the m	ass deposited is equal to	(b) Electrophilic substitution		
(a) Equivalent we		(c) Free radical substitu	tion	
(b) Atomic weight	-	(d) More than one of th	e above processes	
(d) Chemical equi	ar equivalent			
(u) Chemical equi	Ivalent	81. The major produ	act obtained in the	
72 When one of am	and automat flave for leasthrough a	following reaction	on is:_	
72. when one of amp	ete cuttent nows for i sectificagi a	O OH		
(a) Faraday	(b) Coulomb	I a u	AlH.	
(c) $E.M.E.$	(d) Ohm		xcess)	
(0) 20010		CH ₃		
73 . When $1E$ of electric	ty is passed through a cidulated water Q_{2}			
evolved is	ty is pussed through a characterized water, or 2	NO ₂ O		
(a) $11.2 \ dm^3$	(b) $5.6 dm^3$			
(a) 22.1 dm ³	(d) $10 dm^3$	OH		
(C) 22.4 um	(d) 1.0 <i>um</i>	ON		
74. In the reaction, $2Fe$	$SO_4 + H_2SO_4 + H_2O_2 \rightarrow Fe_2(SO_4)_3 + H_2O_2 \rightarrow Fe$			
(a) FeSO ₄ (b) H_2C		NH, OH		
(c) H_2SO_4 (d) both	$1^{1}H_{2}SO_{4}$ and $H_{2}O_{2}$			
75. What is the general	molecular formula of the products	O OH		
obtained on heating	(b) LpS	Ť –		
(c) Ln_3 S ₂ (d) Ln_2	S ₃	(b)		
76. Which of the follow	ving statements is false?		CH ₃	
(a) The interstitial co	ompounds have similar chemical	NO, OH		
properties as the pare	ent metals but differ appreciably in their	4		
(b) Interstitial compo	ounds possess high melting points which			
are higher than thos	e of pure metals.			

C

