SATISH SCIENCE ACADEMY

Where We Shape The Career

	Date :	MHTCET MO	OCK TEST 02	No. MCQ	
1.	Diffraction and interfe (a) Nature of light is (b) Wave nature (c) Nature is quantu (d) Nature of light is	erence of light suggest electro-magnetic m transverse	 (a) Inner orbits of atoms (b) Free electrons existin (c) Decay of a neutron i (d) Photon escaping from 	g in nuclei n a nucleus n the nucleus	
2.	In case of Fraunhoffe diffraction pattern of the following stateme	er diffraction at a single slit the 1 the screen is correct for which of nts?	 9. The threshold wavelength for 6500 Å. The work function of (a) 2 eV (c) 0.1 eV 	or photoelectric effect of a metal is of the metal is approximately (b) 1 eV (d) 3 eV	
(a)	Centraldark band havi	ng uniform brightness on either side.			
(b) dec	Central dark band having creasing intensity on eith	g alternate dark and bright bands of her side.	10. A 60 W source emits mon 662.5 nm. The number of (a) 5×10^{17} (b) 2×10^{17} (c) 5×10^{26} (d) 2×10^{26}	ochromatic light of wavelength f photons emitted per second is $\times 10^{20}$ $\times 10^{29}$	
(c) Central bright band having dark bands on either side.		11. A lamp consumes only 50% of peak power in an a.c. circuit. What is the phase difference between the applied voltage and the circuit current			
dec	creasing intensity on eith	ner side.	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	
3.	For the myopic eye, th (a) Convex lens (c) Cylindrical lens	e defect is cured by (b) Concave lens (d) Toric lens	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{2}$	
4.	The aperture of the resolving power of wavelength 2440 A (a) 8.1x10 ⁶	he objective is 24.4 cm. The this telescope. If a light of is used to see the object will be (b) 10.0×10^7	12. An <i>LCR</i> circuit contains $R = 5$ impedance of the circuit will (a) $\frac{10^5}{2\pi} s^{-1}$	50 Ω , $L=1 mH$ and $C=0.1 \mu F$. The be minimum for a frequency of (b) $\frac{10^6}{2\pi} s^{-1}$	
	(c) 8.2x10 ⁵	(d) 1.0x10 ⁻⁸	(c) $2\pi \times 10^5 s^{-1}$	(d) $2\pi \times 10^6 s^{-1}$	
5.	The dominant mechan forward and reverse bi	isms for motion of charge carriers in iased silicon <i>P-N</i> junctions are	13. A coil of area 100 cm^2 h 0.1 weber / metre ² is perpe	as 500 turns. Magnetic field of ndicular to the coil. The field is	
	(a) Drift in forward bias, diffusion in reverse bias		reduced to zero in 0.1 second. The induced e.m.f. in the coil is		
	(b) Diffusion in forwa(c) Diffusion in both(d) Drift in both forwa	ard bas, drift in reverse bas forward and reverse bias vard and reverse bias	(a) 1 V (c) 50 V	(b) 5 V(d) Zero	
6.	 Which of these is unipolar transistor (a) Point contact transistor(b) Field effect transistor 		14. A circular disc of radius 0.2 meter is placed in a uniform magnetic field of induction $\frac{1}{\pi} \left(\frac{Wb}{m^2} \right)$ in		
	(c) FIVE transistor	(d) None of these	such a way that its axis	makes an angle of 60° with	
7.	The minimum energy required to excite a hydrogen atom from its ground state is		\vec{B} . The magnetic flux (a) 0.08Wb (b) 0.01Wb	linked with the disc is	
	(a) 13.6 <i>eV</i>	(b) $-13.6 eV$	(c) $0.02Wb$ (d) $0.06Wb$		
	(c) 3.4 <i>eV</i>	(d) 10.2 <i>eV</i>	15. Two magnets <i>A</i> and <i>B</i> are id	entical in mass, length and breadth	
8.	The electron emitted in	n beta radiation originates from	but have different magr magnetometer, if the time p	netic moments. In a vibration eriod of <i>B</i> is twice the time period	

35. Radius of orbit of satellite of earth is R. Its kinetic energy is proportional to **28.** The temperature on Celsius scale is $25^{\circ}C$. What is the corresponding temperature on the Fahrenheit scale (a) $\frac{1}{R}$ (b) $\frac{1}{\sqrt{R}}$ (a) $40^{\circ}F$ (b) 77°*F* (c) $50^{\circ}F$ (d) 45°F (d) $\frac{1}{R^{3/2}}$ (c) R**29.** A *litre* of alcohol weighs 36. The resultant force of 5 N and 10 N can not be (a) Less in winter than in summer (b) 8 N (a) 12 N (b) Less in summer than in winter (c) 4 N (d) 5 N (c) Some both in summer and winter (d) None of the above **37.** A 0.5kg ball moving with a speed of 12m/s strikes a hard wall at an angle of 30° with the wall. It is 30. A big water drop is formed by the combination of *n* small water drops of equal radii. The ratio of the surface energy reflected with the same speed at the same angle. If of *n* drops to the surface energy of big drop is the ball is in contact with the wall for 0.25 seconds. (a) $n^2:1$ (b) *n*:1 the average force acting on the wall is (c) \sqrt{n} : 1 (d) $\sqrt[3]{n}$: 1 (a) 96 N (b) 48 N (c) 24 N (d) 12 N. 31. Calculate the value of *h* in *U*-tube shown in the following figure. 38. A particle of mass mwith an Given: Density of oil = 0.9 g/cm^3 , Density of carbon tetrachloride = 1.6 g/cm^3 initial velocity ui collides perfectly Density of mercury = 13.6 g/cm^3 elastically with a mass 3 mat rest. It moves with a velocity vì after collision, then, v is given by (a) $v = \frac{1}{\sqrt{6}}u$ (b) $v = \frac{u}{\sqrt{3}}$ (c) $v = \sqrt{\frac{2}{3}}u$ (d) $v = \frac{u}{\sqrt{2}}$ Carbon tetra chloride D Mercurv 39. A uniform metal chain is placed on a rough table such that one end of chain hangs down over the edge of the table. When one-(a)18.9cm (b)20.9cm third of its length hangs over the edge, the chain starts sliding. Then, the coefficient of static friction is (c)30.9cm (d)40.9cm **32.** A soap bubble in vacuum has a radius of 3 *cm* and another soap (a) $\frac{3}{4}$ bubble in vacuum has a radius of 4 cm. If the two bubbles coalesce under isothermal condition, then the radius of the new (c) $\frac{2}{2}$ (d) $\frac{1}{1}$ bubble is (a) 2.3 cm (b) 4.5 cm (c) 5 *cm* (d) 7 cm **40.** A cyclist riding the bicycle at a speed of $14\sqrt{3}$ ms⁻¹ takes a turn around a circular road of radius $20\sqrt{3}$ m without skidding. **33.** Water rises in a capillary tube when its one end is dipped Given $g = 9.8 \text{ ms}^{-2}$, what is his inclination to the vertical vertically in it, is 3 cm. If the surface tension of water is $75 \times$ 10^{-3} N/m, then the diameter of capillary will be (b) 90° (a) 30° (a) 0.1 mm (b) 0.5 mm (d) 60° (c) 45° (c) 1.0 mm (d) 2.0 mm **41.** A bullet is dropped from the same height when another bullet 34. Two planets have the same average density but their radii are is fired horizontally. They will hit the ground R_1 and R_2 . If acceleration due to gravity on these planets be (a) One after the other (b) Simultaneously g_1 and g_2 respectively, then (c) Depends on the observer (d) None of the above (a) $\frac{g_1}{g_2} = \frac{R_1}{R_2}$ (b) $\frac{g_1}{g_2} = \frac{R_2}{R_1}$ (c) $\frac{g_1}{g_2} = \frac{R_1^2}{R_2^2}$ (d) $\frac{g_1}{g_2} = \frac{R_1^3}{R_2^3}$ (a) $\frac{g_1}{g_2} = \frac{R_1}{R_2}$ 42. A tangential force F is applied on a disc of radius R, due to which it deflects through an angle θ from its initial position. The work done by this force would be (a) FR(b) *Fθ*

(c) $\frac{FR}{\theta}$ (d) $FR\theta$	48. Two infinitely long parallel wires having linear charge densities λ_1 and λ_2 respectively are placed at a distance of <i>R</i>
	metres. The force per unit length on either wire will be
43. A block of mass $2kg$ hangs from the rim of a wheel of radius	$K = \frac{1}{4\pi\varepsilon_0}$
0.5 m. On releasing from rest the block falls through $5 m$	$(2\lambda_1\lambda_2)$ $(2\lambda_1\lambda_2)$
height in $2s$. The moment of inertia of the wheel will be	(a) $K \frac{m_1 m_2}{R^2}$ (b) $K \frac{m_1 m_2}{R}$
(a) $1 kg - m^2$	(c) $K \frac{\lambda_1 \lambda_2}{\lambda_2}$ (d) $K \frac{\lambda_1 \lambda_2}{\lambda_2}$
(b)3.2 kg - m^2	$\frac{(C)}{R^2} \qquad \qquad (C) K - \frac{R}{R}$
(c)2.5 kg - m^2	
(d)1.5 kg - m^2	49. Three parallel plate air capacitors are connected in $\frac{A}{A}$ and the
	separation between the plates is $d_{2}d$ and $3d$ respectively.
44. A circular disc D_1 of mass M and	The equivalent capacity of combination is (ϵ_0 = absolute
radius R has two identical D_2 and D_3 of	f permittivity of free space)
the same mass M and radius R	(a) $\frac{760^{4}}{18d}$ (b) $\frac{1100^{4}}{18d}$
attached rigidlyat its opposite ends (see	$(c) \frac{13 c_0 A}{18d} \qquad (d) \frac{17 c_0 A}{18d}$
figure). The moment of inertiaof the	50. If current in an electric bulb changes by 1%, then the power
system about the axis OO', passing	will change by
through the centre of D_1 , as shown in	(a) 1% (b) 2%
the figure, will be :	(c) 4% (d) $\frac{1}{2}$ %
	2
Ψ	51. What volume of NH_2 gas at STP would be needed to prepare
	100 <i>ml</i> of 2.5 molal (2.5m) ammonium hydroxide solution
D_{i} O_{i} D_{i}	(a) 0.056 litres (b) 0.56 litres
\bigcup $\overline{\mathbf{D}}_{i}$ \bigcup	(c) 5.6 litres (d) 11.2 litres
(a) MR^2 (b) $3MR^2$	52. The volume of 10 Nord 4 NUCl required to make 1 litra
(c) $\frac{4}{3}$ MR ² (d) $\frac{2}{3}$ MR ²	of 7 NHCl are
	(a) 0.50 litre of 10 NHCl and 0.50 litre of 4 N HCl
45. A perfect gas at $27^{\circ}C$ is heated at constant pressure so as to triple its volume. The temperature of the gas will be	(b) 0.60 litre of 10 NHCl and 0.40 litre of 4 N HCl
(a) 81°C (b) 900°C	(c) 0.80 litre of 10 NHCl and 0.20 litre of 4 N HCl
	(d) 0.75 litre of 10 NHCl and 0.25 litre of 4 N HCl.
(c) $627^{\circ}C$ (d) $450^{\circ}C$	52 Which are of the full mine enough
16 The maximum maximum density of a no disting southed by	of isoelectronic species
is 289.8 nm. Then intensity of radiation for the star is	(a) Na^+, Ca^{2+}, Mg^{2+} (b) N^{3-}, F^-, Na^+
(Given : Stefan's constant = 5.67×10^{-8} W m ⁻² K ⁻⁴ ,	(c) $Be_{,Al}^{3+}, Cl^{-}$ (d) Ca^{2+}, Cs^{+}, Br
Wien's constant, $b = 2898 \mu \text{mK}$) (a) 5.67 × 10 ⁻¹² W m ⁻²	
(b) $10.67 \times 10^{14} \text{Wm}^{-2}$	54. Uncertainty principle save the concept of
(c) 5.67×10^8 W m ⁻²	(a) Probability
(d) 10.67×10^7 W m ⁻² 47 The speed of sound in an ideal gas at a given temperature	(b) An orbital
T is v . Then rms speed of gas molecules at that	(c) Physical meaning of Ψ the Ψ^2
temperature is $v_{\rm rms}$. The ratio of the velocities v and $v_{\rm rms}$	(d) All the above
tor helium and oxygen gases are X and X' respectively. Then $\frac{X}{x}$ is equal to	
$\frac{1}{(2)} \frac{1}{21} \frac{1}{(2)} \frac{1}{$	55. Out of the following hybrid orbitals, the one which forms the
$(a) \frac{\sqrt{5}}{\sqrt{5}} \qquad (b) \frac{\sqrt{21}}{\sqrt{21}}$	bond at angle 120°, is
(c) $\sqrt{\frac{5}{21}}$ (d) $\frac{21}{5}$	(a) $d^2 s p^3$ (b) $s p^3$
	(c) sp^2 (d) sp
RRANCHES • DHANORI – VISHR	

56. When common salt is dissolved in water

- (a) Melting point of the solution increases
- (b) Boiling point of the solution increases
- (c) Boiling point of the solution decreases
- (d) Both melting point and boiling point decreases

57.Match List-I and List-II.

List-I	List-II	
A. Osmosis	I. Solvent molecules	
	pass through semi	
	permeable membrane	
	towards solvent side.	
B. Reverse	II. Movement of	
osmosis	charged colloidal	
	particles under the	
	influence of applied	
	electric potential	
	towards oppositely	
	charged electrodes.	
C. Electro	III. Solvent molecules	
osmosis	pass through semi	
	permeable membrane	
	towards solution side	
D.	IV. Dispersion medium	
Electrophoresis	moves in an electric	
	field.	

Choose the correct answer from the options given below:

- (a)A-I,B-III,C-IV,D-II (b) A-III, B-I, C-IV, D-II (c) A-III, B-I, C-II, D-IV
- (d) A-I, B-III, C-II, D-IV
- **58.** If the radius ratio is in the range of 0.414 0.732, then the coordination number will be
 - (a) 2 (b) 4 (c) 6 (d) 8
 - **59.** If the distance between Na^+ and Cl^- ions in NaClcrystal is a, pm, what is length of the cell edge?
 - (a) 4a pm
 - (b) a / 4pm
 - (c) a / 2pm
 - (d) 2apm
 - **60.** BF_3 is used as a catalyst in several industrial processes due to its
 - (a) Strong reducing agent
 - (b) Weak reducing agent
 - (c) Strong Lewis acid nature
 - (d) Weak Lewis acid character

61. The aqueous solution of $FeCl_3$ is acidic due to

- (a) Acidic impurities
- (c) Hydrolysis
- (b) Ionisation (d) Dissociation

- 62. ΔG° for the reaction $X + Y \rightleftharpoons Z$ is -4.606 kcal. The value of equilibrium constant of the reaction at 227 °C is $(R = 2.0 \ cal. mol^{-1} K^{-1})$
 - (a) 100 (b) 10 (c) 2 (d) 0.01
- 63. Hess law deals with
 - (a) Changes in heat of reaction
 - (b) Rate of reaction
 - (c) Equilibrium constant
 - (d) Influence of pressure on volume of a gas
- **64.** For the reaction $2A + B \rightarrow C$, the values of initial rate at different reactant concentration are given in the table below.

The rate law for the reaction is :			
[A]	[B]	Initial Rate	
$(mol \ L^{-1})$	(mol L^{-1})	$(mol \ L^{-1}s^{-1})$	
0.05	0.05	0.045	
0.10	0.05	0.090	
0.20	0.10	0.72	
(a) Rate = k [$[A][B]^2$		
(b) Rate = k [$[A]^{2}[B]^{2}$		
(c) Rate = k [[A][B]		
(d) Rate = k [$[A]^{2}[B]$		
 65. For the reaction A + 2B → C, rate is given by, R = [A] [B]² then the order of the reaction is (a) 3 (b) 6 (c) 5 (d) 7 66. In 3d series, the metal having the highest M²⁺/M standard electrode potential is (a) Cr (b) Fe 			
(c) Cu	(0	d) Zn	
 67. The reference electrode is made by using (a) ZnCl₂ (b) CuSO₄ (c) HgCl₂ 			
(d) Hg_2CI_2			
 68. What is the density of solution of sulphuric acid usetid as an electrolyte in lead accumulator? (a) 1.5 g L⁻¹ (b) 1.2 g L⁻¹ (c) 1.8 g L⁻¹ (d) 2.0 g L⁻¹ 69. Identify the process in which change in the oxidation state is five : (a) Cr₂O₇²⁻ → 2Cr³⁺ (b) MnO₄⁻ → Mn²⁺ 			
(c) $CrO_4^{2-} \rightarrow Cr^{3+}$	- (4	$4) C_2 O_4^{2-} \rightarrow 2CC$	D_2

70. Gold number is maximum for the lyophilic sol is

(a) Gelatin	(b) Haemoglobin	(a) Acids	(b) Bases	
(c) Sodium ol	eate (d) Potato starch	(c) Salts	(d) Neutral molecules	
71. Zinc does not sl	Zinc does not show variable valency like <i>d</i> -block elements		78. Given:	
(a) It is a soft	metal	H		
(b) <i>d</i> -orbital is	complete	H ₃ C	H_ /Br	
(c) It is low m	elting	СН3	Br	
(d) Two electr	ons are present in the outermost orbit	Br I and	d CH ₃ II CH ₃	
72. Permanent mag	net is made from	I and II are		
(a) Cast iron	(b) Steel	(a) identical	Y	
(c) Wrought Ir	on (d) All of these	(b) a pair of conform	lers	
73. Which of the	following complexes exhibits the	(c) a pair of geometri	cal isomers	
highest param	agnetic behaviour?.	(d) a pair of optical is	somers.(KarnatakaNEET2013)	
(a) $[Co(ox)_2(OH)]$,]_			
(b) $(T^{*}(N)) \rightarrow 1^{3+}$	2 -	79. According to Lewis	concept of acids and bases, ether is	
$(\mathbf{D})[Ii(NH_3)_6]^{\circ}$		(a) Acidic	(b) Basic	
(c) $[V(gly)_2(OH)_2$	$(NH_3)_2]^+$	(c) Neutral	(d) Amphoteric	
(d)[Fe(en)(bpy)($[NH_3)_2]^{2+}$ where $gly =$ glycine, $en =$	80. Primary and seconda	ary alcohols on action of reduced copper	
ethylenediamine a	and $bpy = bipyridylmoities$. (At. nos.	give		
Ti = 22, V = 23, F	Fe = 26, Co = 27) (2008)	(a) Aldehydes and (b) Ketenes and (c)	l ketones respectively	
,		(c) Only aldehyde	s	
'4. What is the correct order of the following elements with respect to their density?		(d) Only ketones	5	
(-) Or (E)		81. Acetaklehyde cannot	show	
(a) $Cr < re$	e < Co < Cu < Zii	(a) Iodoform test	(b) Lucas test	
(c) $Zn < C^2$	u < Co < Fe < Cr	(c) Benedict's test	(d) Tollen's test	
(d) Zn < C	r < Fe < Co < Cu			
		82. Which one of the	following esters cannot undergo	
75. When the hy	bridization state of carbon atom	Claisen self-condensation?		
changes fron	r^{3} sp ³ to sp ² and finally to sp, the	$(a)C_6H_5CH_2COOC_2H$		
angle betwee	n the hybridized orbitals	(b) $C_6 H_5 COOC_2 H_5$		
(a) decreases gra	dually	(c) $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	$COOC_2H_5$	
(b) decreases cor	nsiderably	$(d) C_6 H_{11} C H_2 COOC_2$	$_{2}H_{5}$ (1998)	
(c) is not affected				
(d) increases pro	agressively (1993)	83. CH_3COOH is reacted	ed with $CH = CH$ in presence of Hg^{++} ,	
(u) mereases pre	gressivery. (1993)	the product is		
The the man stic	-	(a) $CH_3(OOCCH_3)$) (b) CH_3	
76. In the reaction	911 NaNHa / Ijo NHa (i) NaNHa / Ijo NHa	$CH_2(OOCH_3)$	CH_2 -(OOC - CH_3)	
н—с≡сн (і)	$\xrightarrow{(1) \text{ CH CH } P_{\pi}} X \xrightarrow{(1) \text{ CH CH } P_{\pi}}$	Y (c) CH ₃	(d) None of these	
	$C\Pi_3 C\Pi_2 D\Gamma$ (ii) $C\Pi_3 C\Pi_2 D\Gamma$	$CH(OOC-CH_3)$	D_2	
(a) $X = 2$ -Butyn	e, $Y = 2$ -Hexyne			
(b) $X = 1$ -Butyne	Y = 2-Hexyne	84.Which dicarbox	ylic acid in presence of a	
(c) $X = 1$ -Butyne	Y = 3-Hexyne	dehydrating ager	nt is least reactive to give an	
(d) $X = 2$ -Butyn	e, Y=3-Hexyne. (<i>NEET-I2016</i>)	anhydride ?		
77. In nucleophilic	aliphatic substitution, the nucleophiles are			
generally				

95. When H₂ S is passed through an ammoniacal salt solution **103.** The equation of the straight line joining the point (a, b) to the X, a white precipitate is obtained. Then X can be a point of intersection of the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ is (a) Co^{2+} solution (b) Mn^{2+} solution (c) Ni^{2+} solution (d) Zn^{2+} solution (a) $a^2y - b^2x = ab(a-b)$ (b) $a^2y + b^2y = ab(a+b)$ **96.** The conversion of hydroxyapatite occurs due to presence of F-ions in water. The correct formula (c) $a^2y + b^2x = ab$ (d) $a^2x + b^2y = ab(a-b)$ ofhydroxyapatite is: (a) $[3Ca_3(PO_4)_2 \cdot Ca(OH)_2]$ **104.Equation of line passing through the point (1,2) and** $(b)[3Ca(OH)_2 \cdot CaF_2]$ perpendicular to the line y = 3x - 1 is $(c)[Ca_3(PO_4)_2 \cdot CaF_2]$ (a) x - 3y = 0 $(d)[3Ca_3(PO_4)_2 \cdot CaF_2]$ (b) x + 3y = 0(c) x + 3y - 7 = 097. Which of the following expression represents the first law (d) x + 3y + 7 = 0of thermodynamics? **105.**The value of λ for which the equation (a) $\Delta U = -q + W$ (b) $\Delta U = q - W$ $x^{2} - \lambda xy + 2y^{2} + 3x - 5y + 2 = 0$ may represent a pair of (c) $\Delta U = q + W$ (d) $\Delta U = -q - W$ straight lines is (a) 2 (b) 3 98. Reaction of aqueous sodium hydroxide on (i) ethyl bromide (d) 1 (c) 4 and (ii) chlorobenzene gives (a) (i) Ethene and (ii) o-chlorophenol 106. The lines joining the origin to the points of intersection of the (b) (i) Ethyl alcohol and (ii) o-chlorophenol line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually (c) (i) Ethyl alcohol and (ii) phenol perpendicular, if (d) (i) Ethyl alcohol and (ii) no reaction (a) $a^2(m^2+1) = c^2$ (b) $a^2(m^2 - 1) = c^2$ (c) $a^2(m^2 + 1) = 2c^2$ (d) $a^2(m^2 - 1) = 2c^2$ 99. Which of the following is the example of SN^2 reaction (a) $CH_3Br + OH^- CH_3OH + Br^-$ **107.** The equation of the chord of the circle $x^2 + y^2 = a^2$ having (x_1, y_1) (b) $CH_3CHCH_3 + OH^- \longrightarrow CH_3CHCH_3 + Br^$ as its mid-point is (a) $xy_1 + yx_1 = a^2$ (b) $x_1 + y_1 = a$ (c) $CH_3CH_2OH \xrightarrow{-H_2O} CH_2 = CH_2$ (c) $xx_1 + yy_1 = x_1^2 + y_1^2$ (d) $xx_1 + yy_1 = a^2$ (d) $CH_3 \xrightarrow{CH_3} CH_3$ \downarrow $CH_3 - C - CH_3 + OH^- \rightarrow CH_3 - C - O - CH_3 + Br^-$ 108. The diameter of a circle is AB and C is another point on circle, then the area of triangle ABC will be (a) Maximum, if the triangle is isosceles (b) Minimum, if the triangle is isosceles 100. Given the molecular formula of the hexa coordinated (c) Maximum, if the triangle is equilateral complexes (A) $CoCl_3.6NH_3$ (B) $CoCl_3.5NH_3$ (C) (d) None of these $CoCl_3.4NH_3$. If the number of co-ordinated NH_3 molecules in A, B and C respectively are 6,5 and 4, the primary valency 109. The sum of two forces is 18 N and resultant whose direction is at in (*A*), (*B*) and (*C*) are: right angles to the smaller force is 12N. The magnitude of the two (a) 6, 5, 4 (b) 3, 2, 1 forces are (d) 3, 3, 3 (c) 0, 1, 2(a) 13, 5 (b) 12, 6 (c) 14, 4 (d) 11,7 **101.** $\tan^{-1} x + \cot^{-1}(x+1) =$ **110.**If $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, then which relation is correct (a) $\tan^{-1}(x^2 + 1)$ (b) $\tan^{-1}(x^2 + x)$ (a) a = b = c = 0(b) a.b = b.c = c.a(d) $\tan^{-1}(x^2 + x + 1)$ (c) $\tan^{-1}(x+1)$ (c) $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$ (d) None of these **102.** If the functions are defined as $f(x) = \sqrt{x}$ and **111.** If $3\mathbf{i} + 4\mathbf{j}$ and $-5\mathbf{i} + 7\mathbf{j}$ are the vector sides of any triangle, then $g(x) = \sqrt{1-x}$, then what is the common domain of its area is given by thefollowing functions: (b) 47 (a) 41 f + g, f - g, f/g, g/f, g - f where $(f \pm g)(x) =$ (c) $\frac{41}{2}$ (d) $\frac{47}{2}$ $f(x) \pm g(x), (f/g)(x) = \frac{f(x)}{g(x)}$ (a) $0 \le x \le 1$ (b) $0 \le x < 1$ 112. If $f(x) = e^{2x}$ and $g(x) = \log \sqrt{x}$ (x > 0), then fog(x) is equal to (c) \$0 (d) \$0 (b) $\log \sqrt{x}$ (a) e^{2x}

(c) $e^{2x} \log \sqrt{x}$ (d) x	$122.\int_{0}^{\pi} \frac{\cos^{4} x}{\cos^{4} x + \sin^{4} x} dx$	x =
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$
113. A condition for a function $y = f(x)$ to have an inverse is that it	$(c)\frac{\pi}{d}$	$(d) \frac{2}{\pi}$
should be	8	
(a) Defined for all x	123. $\int_{0}^{\pi/2} \sqrt{\cos \theta} \sin^{3} \theta d\theta =$	
(b) Continuous everywhere	-10° J_0	
(c) Strictly monotonic and continuous in the domain	(a) $\frac{20}{24}$	(b) $\frac{8}{3}$
(d) An even function	21	21
	(c) $\frac{-20}{}$	(d) $\frac{-8}{-8}$
$\log_{(x+1)}(x-2)$	21	21
114. The domain of $f(x) = \frac{1}{e^{2\log e^x - (2x+3)}}, x \in \mathbb{R}$		
(a) $\mathbb{R} - \{1 - 3\}$ (b) $(2, \infty) - \{3\}$	124 The value of the integral	$\int_{0}^{\pi/4} \sin^{-4} u du$
(c) $(-1,\infty) - \{3\}$ (d) $\mathbb{R} - \{3\}$	124.The value of the integral	$\int_{-\pi/4}^{-\pi/4} x dx \mathrm{IS}$
	(a) 3/2	(b) -8/3
115.If $f(x)$ is a function such that $f''(x) + f(x)$ 政 0 and	(c) 3/8	(d) 8/3
$a(x) = \left \int (x) \right ^2 + f'(x) ^2$ and $a(3) = 3$ then $a(8) = 3$		
(a) 5 (b) 0	125. Area enclosed between t	he curve $y^2(2a-r) = r^3$ and line
(a) = (b) = (b) = (b) = (c)	r = 2a above r-axis is	
		$3\pi a^2$
116. A stone moving vertically upwards has its equation of motion	(a) πa^2	(b) $\frac{5\pi u}{2}$
$s = 490 t - 4.9t^2$. The maximum height reached by the stone is	(a) $2 - r^2$	(d) $2 - x^2$
(a) 12250 (b) 1225	(c) $2\pi a$	(d) $3\pi a$
(c) 36750 (d) None of these		
	126. The solution of the different	ential equation $\frac{dy}{dx} = x^2 + \sin 3x$ is
117. The speed v of a particle moving along a straight line is given		dx
by $a + by^2 = x^2$ (where x is its distance from the origin). The	(a) $y = \frac{x^3}{x^3} + \frac{\cos 3x}{\cos 3x} + c$	(b) $y = \frac{x^3}{x^3} - \frac{\cos 3x}{\cos 3x} + c$
acceleration of the particle is	3 3	3 3
(a) bx (b) x/a	x^3 x^3 x^3	(d) None of these
(c) x/b (d) x/ab	(c) $y = \frac{1}{3} + \sin 3x + c$	(d) None of these
118 The function $f(x) = 2x^3 - 15x^2 + 36x + 4$ is maximum at	127. The order of the differentia	al equation whose general solution is
$\begin{array}{c} 1 \text{ for the function } f(x) & 2x & 10x + 20x + 1 \text{ is intermediated} \\ (a) & x = 2 \\ (b) & x = 4 \end{array}$	given by $y = C_1 e^{2x+C_2} + C_2$	$C_3 e^x + C_4 \sin(x + C_5)$ is
$ \begin{array}{c} (a) \ x = 2 \\ (b) \ x = 4 \\ (c) \ x = 0 \\ (d) \ x = 2 \\ (d) \ x $	(a) 5	(b) 4
(c) $x = 0$ (d) $x = 3$	(c) 3	(d) 2
110 The length of the subtangent to the summer $a^2a^2 - a^4$ at		
119.1 he length of the subtangent to the curve $x y = a$ at $(-a a)$ is	128. Let $y = y(x)$ be th	e solution of the differential
(a) $a/2$ (b) $2a$	equation $x \frac{dy}{dx} + y =$	$x \log_{2} x \cdot (x < 1)$ If $2v(2) =$
(c) a (d) $a/3$	$\log 4 - 1$ then $v(e)$ is	= 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
120. The value of $\int \sec^3 x dx$ will be	(a) $-\frac{e}{2}$	(b) $-\frac{e^2}{2}$
(a) $\frac{1}{-1} \left[\sec x \tan x + \log(\sec x + \tan x) \right]$		$(1) e^2$
$\frac{(a)}{2} = \frac{1}{2} \left[\frac{1}{2} $	$(c)_{4}^{-}$	(d) $\frac{1}{4}$
(b) $\frac{1}{2} \left[\sec x \tan x + \log(\sec x + \tan x) \right]$		
	129.If the odds in favour of an e	vent be 3 : 5, then the probability of
(c) $\frac{1}{r} \left[\sec r \tan r + \log(\sec r + \tan r) \right]$	non-occurrence of the event	is
$\frac{1}{4}$	(a) $\frac{3}{5}$	(b) $\frac{5}{2}$
(d) $\frac{1}{2} \left[\sec r \tan r + \log(\sec r + \tan r) \right]$	5	3
	(c) $\frac{3}{2}$	(d) $\frac{5}{2}$
\cup	8	8
$121.\int e^{\tan^{-1}x} \left(1 + \frac{x}{1+x^2}\right) dx$ is equal to		
$\left(a\right)^{\frac{1}{2}}e^{\tan^{-1}x} + c$	130. If the mean of the nu	1 mbers $27 + x$, $31 + x$, $89 + x$,
$(u) \frac{2}{1} u \tan^{-1} x + z$	107 + x, 156 + x is	82, then the mean of
$(0) - xe^{-x} + c$	130 + x, 126 + x, 68 + x, 50 + x	-x, 1+x is
(c) $xe^{\tan^2 x} + c$	(a) 75	(b) 157
(d) $e^{\tan x} + c$	(c) 82	(d) 80

131. If the arithmetic mean of the numbers $x_1, x_2, x_3, \dots, x_n$ is \overline{x} , then (c) $\cos^{-1}\frac{9\sqrt{2}}{22}$ (d) $\cos^{-1}\frac{3\sqrt{2}}{5}$ arithmetic the mean of numbers $ax_1 + b, ax_2 + b, ax_3 + b, \dots, ax_n + b$, where a, b are two constants would be 140. If line $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ is parallel to the plane (b) $n a \overline{x} + n b$ (a) \overline{x} (c) $a\overline{x}$ (d) $a\overline{x} + b$ ax + by + cz + d = 0, then (a) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$ (b) al + bm + cn = 0132. ~ $(p \lor q) \lor (\sim p \land q)$ is logically equivalent to (a) ~*p* (b) *p* (c) $\frac{a}{l} + \frac{b}{m} + \frac{c}{r} = 0$ (d) None of these (d) ~q (c) q **133.** Consider the statement. "For an integer n, if 141. If the angle θ between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the n^3-1 is even, then n is odd." The contrapositive statement of this statement is: plane $2x - y + \sqrt{\lambda z} + 4 = 0$ is such that $\sin \theta = \frac{1}{3}$, the value of (a) For an integer n, if n is odd, then $n^3 - 1$ is λ is even. (a) 3/4 (b) -4/3(b) For an integer n, if n is even, then $n^3 - 1$ is (d) -3/5(c) 5/3 even. (c) For an integer *n*, if *n* is even, then $n^3 - 1$ is 142. The expression odd. $\cos^2(A-B) + \cos^2 B - 2\cos(A-B)\cos A\cos B$ is (d) For an integer *n*, if $n^3 - 1$ is noteven, then *n* is even. (a) Dependent on B(b) Dependent on A and B (c) Dependent on A (d) Independent of A and BThe amplitude of $\sin \frac{\pi}{5} + i \left(1 - \cos \frac{\pi}{5}\right)$ **143.** For any $\theta \in (\frac{\pi}{4}, \frac{\pi}{2})$ the expression 134. (b) $2\pi/5$ (c) $\pi/10$ (d) $\pi/15$ $3(\sin\theta - \cos\theta)^4 + \tilde{6}(\sin\theta + \cos\theta)^2 + 4\sin^6\theta$ equals: (a) $\pi/5$ (a) $13 - 4\cos^2 \theta + 6\sin^2 \theta \cos^2 \theta$ (b) 13 - $4\cos^6 \theta$ **135.** If $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are roots of the equation (c) $13 - 4\cos^2 \theta + 6\cos^4 \theta$ (d) 13 $z^{5} + z^{4} + z^{3} + z^{2} + z + 1 = 0$ then $\prod_{i=1}^{n} (2 - \alpha_{i})$ is equal to - $4\cos^4 \theta + 2\sin^2 \theta \cos^2 \theta$ (c) 32 (d) 64 (b) 31 (a) 63 144.If matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ such that AX = I, then X = I**136.** The direction cosines of the normal to the plane 2x + 3y - 6z = 5(b) $\frac{1}{5} \begin{bmatrix} 4 & 2 \\ 4 & -1 \end{bmatrix}$ (d) $\frac{1}{5} \begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix}$ $\begin{array}{c} (a) \frac{1}{5} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \\ (c) \frac{1}{5} \begin{bmatrix} -3 & 2 \\ 4 & -1 \end{bmatrix}$ are (b) $\frac{2}{7}, \frac{3}{7}, -\frac{6}{7}$ (a) 2, 3, -6145. The inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 2 & 2 & 1 \end{bmatrix}$ is (c) $\frac{2}{5}, \frac{3}{5}, -\frac{6}{5}$ (d) None of these $\begin{array}{c} 2,-1,2\\ (a) -\frac{1}{3} \begin{bmatrix} -3 & 0 & 0\\ 3 & 1 & 0\\ 9 & 2 & -3 \end{bmatrix} \\ (c) -\frac{1}{3} \begin{bmatrix} 3 & 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3 \end{bmatrix} \\ (c) -\frac{1}{3} \begin{bmatrix} 3 & 0 & 0\\ 3 & -1 & 0\\ -9 & -2 & 3 \end{bmatrix} \\ (d) -\frac{1}{3} \begin{bmatrix} -3 & 0 & 0\\ -3 & -1 & 0\\ -9 & -2 & 3 \end{bmatrix}$ 137. If the angle between the lines whose direction ratios are and a, 3, 5 be 45° , then a =(a) 1 (b) 2 (c) 3 (d) 4 146.If $A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$ and A(adj A) = KI, then the value **138.** If a plane cuts off intercepts OA = a, OB = b, OC = c from the coordinate axes, then the area of the triangle ABC =(a) $\frac{1}{2}\sqrt{b^2c^2+c^2a^2+a^2b^2}$ (b) $\frac{1}{2}(bc+ca+ab)$ of K is (where I is unit matrix of order 3) (a) -25 (b) -85 (c) 85 (d) 25(d) $\frac{1}{2}\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}$ (c) $\frac{1}{2}abc$ 147. The value of $\int_{-1}^{3} \tan^{-1} \left(\frac{x}{x^2 + 1} \right) + \tan^{-1} \left(\frac{x^2 + 1}{x} \right) dx$ is **139.** The angle between two planes x + 2y + 2z = 3 and (a) 2π -5x + 3y + 4z = 9 is (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{1}$ (b) $\cos^{-1}\frac{19\sqrt{2}}{20}$ (a) $\cos^{-1}\frac{3\sqrt{2}}{10}$ BRANCHES : DHANORI | VISHRANTWADI CONTACT:8830597066

148.
$$\lim_{x \to \infty} \left[\frac{1}{n} + \frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \frac{n}{(n+2)^2} + \frac{n}{(2n-1)^2} \right] \text{ is equal to}$$
(a) 1 (b) $\frac{1}{3}$
(c) $\frac{1}{2}$ (d) $\frac{1}{4}$
149. If $\int_{0}^{100\pi} \frac{\sin^2 x}{\left[e^{\frac{1}{n}x}\right]^2} dx = \frac{\alpha \pi^3}{1+4\pi^2}, \alpha \in \mathbb{R}$ where [x] is the greatest integer less than or equal to x, then the value of α is:
(a) 200 (1 - e⁻¹) (b) 100(1 - e)
(c) 50(e - 1) (d) 150 (e⁻¹ - 1)
150. $\int \frac{x-1}{(x-3)(x-2)} dx =$
(a) $\log x - 3) - \log (x - 2) + c$
(b) $\log (x - 3)^2 - \log (x - 2) + c$
(c) $\log (x - 3) + \log (x - 2) + c$
(d) $\log (x - 3)^2 + \log (x - 2) + c$

Γ